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The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorre-
lation function. We derive a generalization of the Green-Kubo formula that is valid for systems with long-
range or nonstationary correlations for which the standard approach is no longer valid. For the systems
under consideration, the velocity autocorrelation function hvðtþ τÞvðtÞi asymptotically exhibits a certain
scaling behavior and the diffusion is anomalous, hx2ðtÞi≃ 2Dνtν. We show how both the anomalous
diffusion coefficient Dν and the exponent ν can be extracted from this scaling form. Our scaling Green-
Kubo relation thus extends an important relation between transport properties and correlation functions to
generic systems with scale-invariant dynamics. This includes stationary systems with slowly decaying
power-law correlations, as well as aging systems, systems whose properties depend on the age of the
system. Even for systems that are stationary in the long-time limit, we find that the long-time diffusive
behavior can strongly depend on the initial preparation of the system. In these cases, the diffusivity Dν is
not unique, and we determine its values, respectively, for a stationary or nonstationary initial state. We
discuss three applications of the scaling Green-Kubo relation: free diffusion with nonlinear friction
corresponding to cold atoms diffusing in optical lattices, the fractional Langevin equation with external
noise recently suggested to model active transport in cells, and the Lévy walk with numerous applications,
in particular, blinking quantum dots. These examples underline the wide applicability of our approach,
which is able to treat very different mechanisms of anomalous diffusion.
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I. INTRODUCTION

For many central results of statistical mechanics, the
stationarity of the described quantities is crucial.
Stationarity is conveniently defined in terms of the auto-
correlation function hAðtþ τÞAðtÞi of an observable A,
where h::::i denotes an ensemble average. The quantity A
is called stationary if this correlation function is independent
of the time t (called the age of the system) and only depends
on the time lag τ. Conversely, A is called aging if the
correlation function depends explicitly on the age t.
Generally, any system may show aging for short enough
times, but for a wide class of systems, relaxation into the
stationary state is exponentially fast. They can thus be fully
described by their stationary behavior on time scales longer
than the characteristic relaxation time. However, this is not
true for all physical systems. Some systems may possess a
stationary state, but the relaxation towards this state may be
slow and thus important on experimentally relevant time
scales [1–4]. Other systems may even exhibit aging on all

experimentally accessible time scales [5–7]. The extension
and generalization of known results for the stationary case to
the agingone is important to better understand and character-
ize thebehaviorof aging systems [8]. In thiswork,wediscuss
such a generalization of the Green-Kubo formula.
The Green-Kubo formula, a central result of nonequili-

brium statistical mechanics first discussed by Taylor [9],
expresses the spatial diffusion coefficient D1, defined by
the equation hx2ðtÞi≃ 2D1t as a time integral of the
stationary velocity correlation function [10,11],

D1 ¼
Z

∞

0

dτhvðtþ τÞvðtÞi: (1)

For a Brownian particle of mass m with Stokes’
friction, the velocity correlation function is exponential,
hvðtþ τÞvðtÞi ¼ kBT=m expð−γ�τÞ, and we get the
Einstein relation D1 ¼ kBT=ðmγ�Þ linking the diffusivity
and the friction coefficient γ� via the temperature T. The
Green-Kubo formula offers a simple way of relating the
diffusive properties of a system and its velocity dynamics.
However, it is only valid as long as there exists a stationary
velocity correlation function and its integral is finite. If, by
contrast, the velocity correlation function decays slowly or
is nonstationary, Eq. (1) needs to be generalized.
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We present a generalization of Eq. (1) to superdiffusive
systems, where hx2ðtÞi≃ 2Dνtν with ν > 1. This general-
ized Green-Kubo relation will allow us to determine the
diffusive behavior of the system by studying the scaling
properties of the velocity autocorrelation. The scaling
exponent will be seen to be related to the diffusion
exponent ν, while the anomalous diffusion coefficient
Dν, in the spirit of the original Green-Kubo formula, can
be expressed as the integral over a scaling function. Our
scaling Green-Kubo relation is applicable to a wide range
of systems exhibiting anomalous scale-invariant dynamics.
These include systems whose autocorrelations, while sta-
tionary, exhibit a slow power-law decay, systems where the
correlation function shows usual aging (i.e., the correlation
time increases linearly with the age of the system), and
finally, systems exhibiting what we refer to as superaging,
where in addition to aging, the variance of the velocity
increases with time.
One important finding is that even if a system’s velocity

correlation function is stationary in the long-time limit, the
long-time diffusive dynamics still may not be described by
this stationary correlation function. This implies that aging
effects can be important even in systems that are known to
possess a stationary state; in particular, the diffusivity can
depend strongly on the initial state of the system. This is in
contrast to the established notion of transport coefficients as
unique quantities that are independent of the initial prepa-
ration of the system. Such a persistence of the initial
condition was previously observed by Zumofen and Klafter
for a certain class of dynamical systems [12]. Our scaling
Green-Kubo relation is able to treat both these persistence
effects in stationary systems and in actual aging systems,
offering new insights on the interrelation between diffusive
behavior and correlations.
In the course of this work, we discuss three examples of

such systems with widespread applicability. The first
example is diffusion under the influence of a nonlinear
friction force that is for large velocities inversely propor-
tional to the velocity. This unusual kind of friction force
occurs as an effective cooling force in the semiclassical
treatment of cold atoms in dissipative optical lattices [13].
The interaction of the atoms with the lattice depends
strongly on their velocity, and the Sisyphus cooling
mechanism described by the friction force is not effective
for very fast atoms. This nonlinear behavior of the friction
force on the velocity leads to anomalous dynamics,
including velocity correlations that decay slowly in time
[14] and exhibit superaging [15]. Our scaling Green-Kubo
relation allows us to determine the spatial diffusion
exponent and coefficient from the structure of the velocity
correlation function. In a more general context, our results
also apply to diffusion in a logarithmic potential [15],
which has applications in a wide array of physical systems,
like vortex dynamics [16], long-range interacting systems
[17], particles near a long charged polymer [18],

nanoparticles in a trap [19], self-gravitating particles
[20], or the dynamics of denaturing DNA [21]. It has been
noted by Hirschberg et al. [22,23] that the distribution
function evolves differently for different classes of initial
conditions. By means of our scaling Green-Kubo relation,
we study under which conditions this sensitivity on the
initial condition carries over to the diffusion coefficient.
As our second example, we consider the fractional

Langevin equation with external noise. In this case, the
anomalous dynamics are due to a power-law friction kernel,
which describes a long-range hydrodynamic memory, and
power-law correlated noise [24,25]. The equilibrium frac-
tional Langevin equation has been shown to provide a good
description for anomalous subdiffusion in a crowded
environment, like the cytoplasm of biological cells, in
thermal equilibrium [26,27]. In Refs. [28,29], an external
nonequilibrium noise term was introduced to describe the
superdiffusive behavior due to active forces in living cells.
In this superdiffusive regime, we use our scaling Green-
Kubo relation to determine the diffusive properties from the
velocity autocorrelation. In particular, we find that the
diffusion coefficient is sensitive to whether the system is
initially in the stationary state or not, indicating that the
naive stationary description of the system may not provide
correct results for the measured transport coefficients.
Our final example is a paradigm model for aging, the

Lévy walk [30,31], which is an extension of the continu-
ous-time random walk [32,33] to superdiffusive dynamics.
In its simplest form, this model describes a particle whose
velocity can have values �v0 with random switching
between them. The time between two consecutive changes
in velocity is randomly selected according to a heavy-tailed
power-law waiting-time distribution, ψðtwÞ ∼ t−μ−1w with
0 < μ < 2. In particular, when 0 < μ < 1, the mean wait-
ing time is infinite and the velocity correlation function
ages [34,35]. The Lévy walk has been successfully applied
to various systems, including turbulence [36], search
patterns of animals [37], and blinking quantum dots
[38]. For the latter case, we show how our scaling
Green-Kubo relation offers a straightforward way to con-
nect the anomalous photon statistics to the intensity
autocorrelations.

II. GREEN-KUBO RELATION

We begin by generalizing the Green-Kubo formalism
to treat nonstationary power-law correlations. Our starting
point is the velocity correlation function Cvðt2; t1Þ ¼
hvðt2Þvðt1Þi, which is defined as

Cvðt2; t1Þ ¼
Z

∞

−∞
dv2

Z
∞

−∞
dv1v2v1Pðv2; t2jv1; t1ÞWðv1; t1Þ:

(2)

Here, Pðv2; t2jv1; t1Þ is the conditional probability density,
i.e., the probability to find a particle with velocity v2 at time
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t2, provided it had velocity v1 at t1, and Wðv1; t1Þ is the
probability density to find a particle with velocity v1 at t1.
Equation (2) can be used to determine the mean-square
displacement hx2ðtÞi, an important transport characteristic.
In the case where the process is stationary at long times,
with stationary density Wsðv1Þ ¼ limt1→∞Wðv1; t1Þ, and if
Pðv2; t2jv1; t1Þ ¼ Pðv2; t2 − t1jv1; 0Þ, Eq. (2) tends to the
stationary correlation function Cv;sðτÞ ¼ hvðτÞvð0Þis,
which only depends on the time lag τ ¼ t2 − t1,

Cv;sðτÞ¼
Z

∞

−∞
dv2

Z
∞

−∞
dv1v2v1Pðv2;τjv1;0ÞWsðv1Þ: (3)

Since xðtÞ ¼ R
t
0 dt1vðt1Þ, we can express the second

moment of the position as hx2ðtÞi ¼ R
t
0 dt2

R
t
0 dt1 ×

Cvðt2; t1Þ for a particle starting at the origin, xðtÞ ¼ 0
for t ¼ 0. The (one-dimensional) diffusion coefficient D1

then follows as

D1 ¼
1

2
lim
t→∞

d
dt
hx2ðtÞi ¼ lim

t→∞

Z
t

0

dτCv;sðτÞ; (4)

where the subscript 1 indicates that diffusion is normal,
hx2ðtÞi≃ 2D1t1. The Green-Kubo formula (4) only holds if
the velocity correlation function Cvðt2; t1Þ has a stationary
limit and if it decays fast enough (e.g., exponentially) so
that the time integral is finite. This condition defines a
certain class of correlation functions. For this kind of
system, even if the initial state is not the stationary one, it is
justified to assume the validity of Eq. (4), as long as one is
interested in the dynamics on time scales much longer than
the characteristic correlation time. In the following, we will
introduce a different class of correlation functions, for
which the Green-Kubo formula (4) does not hold. Note
that, generally, there is also the possibility that the time
integral in Eq. (4) vanishes. This leads to subdiffusion,
which we will not consider here.
We consider systems whose velocity correlation function

has the following asymptotic scaling form when both t
(called the age of the system) and τ (the time lag) are large
compared to the system’s microscopic time scales,

Cvðtþ τ; tÞ≃ Ctν−2ϕ
�
τ

t

�
: (5)

This expression is valid for τ > 0; for τ < 0, one has to
replace τ by −τ and t by tþ τ in order to respect the
symmetry of the correlation function with respect to
interchanging its arguments. Here, C > 0 is a constant
and ν > 1. The asymptotic behavior of the positive-valued
scaling function ϕðsÞ is limited by power laws,

ϕðsÞ<cls−δl with 2−ν≤ δl < 1 for s→ 0;

ϕðsÞ<cus−δu with δu> 1−ν for s→∞; (6)

where cl and cu are positive constants. These conditions do
not require ϕðsÞ to behave as a power law at small and/or
large arguments as long as the asymptotic behavior is
within the above limits, so ϕðsÞ might, for example, decay
exponentially for large s. Since the correlation function
Eq. (5) explicitly depends on the age t of the system, it is an
aging correlation function, in contrast to a stationary
correlation function that only depends on the time lag τ.
The asymptotic mean-square displacement hx2ðtÞi for this
type of correlation function is then given by

hx2ðtÞi≃ 2C
Z

t

0

dt2

Z
t2

0

dt1tν−21 ϕ

�
t2 − t1
t1

�
; (7)

where we have used the symmetry of the correlation
function (5). Introducing the variable s ¼ ðt2 − t1Þ=t1,
we obtain

hx2ðtÞi≃ 2C
Z

t

0

dt2tν−12

Z
∞

0

dsðsþ 1Þ−νϕðsÞ: (8)

We thus arrive at our first main result,

hx2ðtÞi≃ 2Dνtν

with Dν ¼
C
ν

Z
∞

0

dsðsþ 1Þ−νϕðsÞ: (9)

While the usual Green-Kubo relation (4) holds for normal
diffusion, this scaling Green-Kubo relation (9) is applicable
for ν > 1, which corresponds to superdiffusion. Thus,
hx2ðtÞi grows faster than linear in time, and the usual
diffusion coefficient in Eq. (4) is not defined. Instead, we
have the anomalous diffusion coefficient Dν, which,
similarly to the original Green-Kubo formula (4), is given
in terms of an integral over a function of a single variable.
Determining the diffusive behavior of a system from its
correlation function thus amounts to determining the
exponent ν and the scaling function ϕðsÞ.
While we derived Eq. (9) in terms of position and

velocity, it holds for any two quantities where one is the
time integral of the other. An example for this is given in
Sec. III C.

A. Classification

The velocity correlation function Eq. (5) includes two
important special cases. The first case consists of long-
range stationary correlation functions that exhibit a
power-law decay for large τ,

Cv;sðτÞ≃ Csτν−2; (10)

with 1 < ν < 2 and Cs > 0 a constant. This is obtained
from Eq. (5) if the scaling function is given by ϕðsÞ ¼ sν−2.
While this correlation function is stationary, its decay is
such that the time integral in Eq. (4) diverges in the infinite
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time limit so that the usual Green-Kubo formula is not
applicable. From the scaling Green-Kubo relation Eq. (9),
we obtain

hx2ðtÞi≃ 2Dν;stν with Dν;s ¼
Cs

νðν − 1Þ ; (11)

where the subscript s stands for stationary. In this case, the
anomalous diffusion coefficient can also be expressed in
terms of a fractional derivative of the stationary velocity
autocorrelation function as was shown by Kneller [39].
However, as we will see below, the stationary correlation
function may not be sufficient to describe the long-time
diffusivity of the system. The second special case is ν ¼ 2,
where we have the usual type of aging correlation function,
which is of the form [5,6,8,40]

Cvðtþ τ; tÞ≃ Cϕ
�
τ

t

�
: (12)

Since in this case, there exists no stationary correlation
function, Eq. (4) is not applicable. For the aging type of
correlation function, Eq. (12), we find ballistic behavior,

hx2ðtÞi≃ 2D2t2

with D2 ¼
C
2

Z
∞

0

dsðsþ 1Þ−2ϕðsÞ: (13)

For ν > 2, we refer to the correlation function Eq. (5) as
superaging, since then, in addition to the dependence on the
age of the system via the scaling function like in the usual
aging case Eq. (12), the overall value of the correlation
function also increases with the age of the system. A similar
type of correlation function, although with a logarithmic
time dependence of the prefactor, has been found for a
random walker in a random environment [41].
Summarizing, we thus have four different classes of
correlation functions: Stationary, integrable correlation
functions are covered by the usual Green-Kubo formula
Eq. (4). By contrast, stationary, nonintegrable correlation
functions and aging correlation functions, which we can
further differentiate into aging and superaging ones, are all
encompassed by the scaling Green-Kubo relation Eq. (9).
Three important examples for physical models whose
correlation functions belong to one of the latter three
classes and thus follow the asymptotic behavior, Eq. (5),
are discussed in Sec. III.
The occurrence of the scaling function ϕðsÞ in Eq. (5)

captures the fact that the age t of the system also sets
the time scale over which the correlations decay; i.e., the
correlation time increases linearly with the age of the
system. For the usual exponential kind of correlation
functions, the correlation time is constant and it provides
a typical time scale. In aging systems, no constant corre-
lation time exists, or it is much larger than the time scales
over which the system is observed. Then, the only relevant

time scale is the age of the system. If the correlation time
increases slower or faster than linearly with the age of the
system, the diffusion may be retarded (and even subdiffu-
sive) or accelerated compared to Eq. (9), depending on the
asymptotic behavior of the scaling function ϕðsÞ. The case
where the correlation time depends sublinearly on the
age of the system is also referred to as subaging [42,43].
This retarded and accelerated aging is discussed in the
Appendix.

B. Application to experimental data

Before we start discussing the application of the scaling
Green-Kubo relation to specific physical systems, we
outline its application as a data analysis method for a
generic velocity correlation function that has been obtained
experimentally or numerically. To this end, we use the
velocity correlation function generated by performing
numerical Langevin simulations of free diffusion under
the influence of a friction force that is asymptotically
inversely proportional to the velocity (see Sec. III A for
details). For now, we do not discuss the specifics and
properties of this system but instead just use it as a way to
generate the data for the correlation function. Applying
Eq. (9) to the measured correlation function requires us to
identify the scaling behavior of the latter. This is done in the
following way, as illustrated in Fig. 1: First, we obtain the
correlation function as a function of the time lag τ for
different initial times t and plot it as a function of τ=t
[Figs. 1a and 1b]. Then, we rescale the resulting curves by
tν−2, the correct value of ν being obtained when the data
collapse onto a single curve [Fig. 1c]. This determines the
diffusion exponent ν. The single rescaled curve is then the
function ϕðsÞ in Eq. (9). Multiplying ϕðsÞ by ð1þ sÞ−ν and
numerically integrating the resulting curve, we obtain the
generalized diffusion coefficient Dν. In Fig. 1d, we
compare the results obtained in this way to the mean-
square displacement obtained directly from the numerical
simulations by integrating the velocity process and also to
the asymptotic analytical one [see Eqs. (31)and (32)], and
we find good agreement within the accuracy of the
numerical simulations. Compared to determining the dif-
fusion exponent and coefficient directly from the data for
the mean-square displacement, this rescaling method has
the advantage that it does not require any fitting of the data.

C. Persistence of initial conditions

Previously, we discussed the long-time limit of the mean-
square displacement of a process starting at time t ¼ 0.
However, since the systems we are interested in exhibit
long-time correlations, the previous history of the system,
i.e., the initial conditions, may have a significant impact on
the dynamics. In order to discuss the effect of the initial
condition, let us consider a slightly different situation. We
still assume that the long-time asymptotic form of the
correlation function is given by Eq. (5). However, now we
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consider the relative mean-square displacement
hΔx2ðtÞit0 ¼ hðxðtþ t0Þ − xðt0ÞÞ2i with respect to some
long aging time t0. We can think of t0 as an “equilibration
time”: The process starts with a sharp initial condition [e.g.,
vð0Þ ¼ 0, xð0Þ ¼ 0], and we let it evolve for a time t0
before starting to measure the mean-square displacement.
Note that, generally, we consider nonstationary systems,
which possess no actual equilibrium state, hence the
quotation marks on equilibration time. By definition, the
relative mean-square displacement is given by

hΔx2ðtÞit0 ¼hðxðt0þ tÞ−xðt0ÞÞ2i

¼
Z

t0þt

t0

dt2

Z
t0þt

t0

dt1Cvðt2;t1Þ

≃2C
Z

t

0

dt2

Z
t2

0

dt1ðt1þ t0Þν−2ϕ
�
t2− t1
t1þ t0

�
: (14)

Introducing the variables s ¼ ðt2 − t1Þ=ðt1 þ t0Þ and
z ¼ t2=t, we can write this as

hΔx2ðtÞit0 ≃ 2Dt=t0
ν tν

with Dt=t0
ν ¼ C

Z
1

0

dzzν−1
�
1þ 1

z t
t0

�
ν−1

×
Z

z t
t0

0

dsðsþ 1Þ−νϕðsÞ: (15)

This resembles the scaling Green-Kubo relation (9), how-
ever with an anomalous diffusion coefficient Dt=t0

ν that
formally depends on the ratio t=t0. In the limit t ≫ t0, we
can neglect the second term in parentheses and take the
upper bound of the second integral in Eq. (15) to infinity to
obtain the expression given by the scaling Green-Kubo
relation (9) independent of t0,

D∞
ν ¼ Dν ¼

C
ν

Z
∞

0

dsðsþ 1Þ−νϕðsÞ: (16)

For finite equilibration times, the scaling Green-Kubo
relation, together with the aging correlation function
Eq. (5), thus gives the “true” long-time limit for the
mean-square displacement.
In the opposite limit t ≪ t0, on the other hand, the

behavior is governed by the small-s expansion of the
scaling function ϕðsÞ,

Dt=t0
ν ≃ C

�
t0
t

�
ν−1 Z 1

0

dz
Z

z t
t0

0

dsϕðsÞ: (17)

Generally, if the second moment of the velocity either is
asymptotically constant or increases with time,
hv2ðtÞi ¼ Cðt; tÞ≃ aCtβ, with some positive constant a
and 0 ≤ β < ν − 1, continuity demands ϕðsÞ≃ cls−δl with
δl ¼ 2 − νþ β for small s, and thus,

Dt=t0
ν ≃ clC

ðν − β − 1Þðν − βÞ
�
t0
t

�
β

: (18)

Consequently, we find for the relative mean-square dis-
placement,

hΔx2ðtÞit0 ≃ 2
clC

ðν − β − 1Þðν − βÞ t
β
0t

ν−β: (19)

This is obviously different from Eq. (9); in particular, the
diffusion exponent is different, and the anomalous diffusion
coefficient grows with the aging time t0. This shows that
the history of the process and, by extension, the initial state
of the systems at time t0 influence the diffusive behavior.
For β > 0, where the second moment of the velocity
increases with time and thus no stationary correlation
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FIG. 1 (color online). Computation of the diffusion exponent and coefficient for cold atoms in optical lattices from the correlation
function using the scaling Green-Kubo formula Eq. (9). (a) Correlation function as a function of the total time tþ τ for different values
of t. (b) Correlation function plotted as a function of τ=t. (c) After rescaling by tν−2 with ν ¼ 2.37. (d) Mean-square displacement
obtained by integrating over the rescaled correlation function ϕðsÞ (empty circles) compared to the analytical result Eqs. (31) and (32)
(red line) and the mean-square displacement obtained directly from the Langevin simulation (blue squares). From the rescaling and
integration procedure, we obtain ν≃ 2.37 and Dν ≃ 0.321, which agrees well with the asymptotic analytical results ν ¼ 2.37 and
Dν ¼ 0.323. The parameters for the simulation areD ¼ 3.25, γ ¼ 5.10, and vc ¼ 1.20 [see Eq. (22)], with 106 trajectories and 2.5 × 105

integration steps per trajectory.
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function exists, this is not surprising. If we let the
process evolve for a longer time, the overall velocity will
increase and thus diffusion becomes faster. Of particular
interest is the case β ¼ ν − 2 > 0 that occurs for
the superaging regime of the examples discussed in
Secs. III A and III B. Here, we find from Eq. (19) quasi-
ballistic diffusion with an anomalous diffusion coefficient
that increases with t0. In this case the scaling function is
asymptotically constant, ϕðsÞ≃ cl for small s.
If the stationary correlation function Eq. (10) exists, the

second moment of the velocity is asymptotically constant
and thus β ¼ 0. We then have, with Cs ¼ aC,

D0
ν ¼

Cs
νðν − 1Þ ¼ Dν;s: (20)

This is precisely the stationary result Eq. (11). In this case,
we thus have two values for the anomalous diffusion
coefficient,

hΔx2ðtÞit0 ≃
�

2Dνtν for t ≫ t0
2Dν;stν for t ≪ t0;

(21)

both of which are independent of t0. Note that even though
in this case the scaling function diverges at small s,
ϕðsÞ≃ cl sν−2, the correlation function itself is of course
finite in the limit τ → 0 as Eq. (6) only gives the long time
behavior of the latter. A particular case of Eq. (21) is ν ¼ 2,
β ¼ 0, when the aging correlation function Eq. (12) tends to
a constant that takes the place of the stationary correlation
function for t ≫ τ. An example for this is the aging
correlation function for the Lévy walk (see Sec. III C).
Which of the two values Dν and Dν;s in Eq. (21) correctly
describes the long-time diffusive behavior depends on the
initial preparation of the system: If the system is not initially
in the stationary state (i.e., t0 is finite), then we need to use
the aging correlation function Eq. (5) and obtain Dν for the
diffusivity. On the other hand, if the system is initially
prepared in the stationary state (i.e., infinite t0), then it is
correctly described by the stationary correlation function
Eq. (10), and we obtain Dν;s for the diffusivity. The initial
condition of the system thus persists even in the long-time
limit. This is in contrast to systems where the correlations
decay exponentially and the long-time diffusivity is uniquely
determined by the Green-Kubo formula (4) independent of
the initial condition. Examples for this persistence of the
initial condition are discussed in Sec. III.

III. APPLICATION TO THREE
SCALE-INVARIANT SYSTEMS

A. Diffusion with a 1=v friction force

Our first example for a scale-invariant system to which
our scaling Green-Kubo formula is applicable is diffusion
with a friction force that is inversely proportional to the
velocity. The velocity dynamics are governed by the
Fokker-Planck equation,

∂tWðv; tÞ ¼ ∂v½−FðvÞWðv; tÞÞ þD∂vWðv; tÞ�; (22)

for the velocity probability density Wðv; tÞ, D being the
velocity diffusion coefficient. We take the friction force to
be asymptotically inversely proportional to the velocity,

FðvÞ≃− γv2c
v

for v ≫ vc; (23)

with friction coefficient γ and characteristic velocity vc. A
concrete example would be

FðvÞ ¼ − γv
1þ v2=v2c

; (24)

which is linear for small velocities and has the desired
behavior (23) for large velocities. This particular form of
the friction force occurs in the semiclassical description of
cold atoms in dissipative optical lattices [13,14]. It turns out
that the long-time dynamics depend crucially on the ratio of
the prefactor γv2c of the friction force and the diffusion
coefficient D. Specifically, we introduce the parameter

α ¼ γv2c
2D

þ 1

2
; (25)

in terms of which the stationary solution of Eq. (22) for
α > 1 is given by [44]

WsðvÞ¼
1

Z

�
1þv2

v2c

�1
2
−α

with Z¼
ffiffiffi
π

p
Γðα−1Þvc

Γðα−1=2Þ ; (26)

where ΓðaÞ denotes the Gamma function. This stationary
velocity distribution has power-law tails, meaning that,
depending on the exponent, different moments of the
stationary distribution will be infinite. In particular, the
second moment diverges when α < 2, which implies
infinite kinetic energy Ek ¼ mhv2i=2. For cold atoms in
optical lattices, both the power-law tailed probability
density and the divergence of the kinetic energy have been
observed in experiments [45,46]. Since an infinite kinetic
energy is nonphysical, it is clear that a time-dependent
solution to the Fokker-Planck equation (22) is required to
capture the dynamics. Asymptotically for large velocities
and long times, this time-dependent solution is given by the
infinite covariant density derived in Ref. [47],

WICDðv;tÞ≃
8<
:

1
ZΓðαÞ

�
jvj
vc

�
1−2α

Γ
�
α; v2

4Dt

�
for α>1

1
Γð1−αÞð4DtÞα−1jvj1−2αe− v2

4Dt for α<1;

(27)

with the upper incomplete Gamma function Γða; xÞ. In
conjunction with the stationary solution, the infinite covar-
iant density determines the asymptotic behavior of all
moments, in particular,
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hv2ðtÞi≃

8>><
>>:

v2c
2ðα−2Þ for α > 2

v2α−1c
ZΓðαÞð2−αÞ ð4DtÞ2−α for 1 < α < 2

ð1 − αÞ4Dt for α < 1.

(28)

For α < 2, where the second moment of the stationary
distribution is infinite, the kinetic energy thus increases
with time. The corresponding velocity correlation function
was derived in Refs. [15,48] and has the asymptotic
behavior

Cvðtþ τ; tÞ≃
8<
:
v2α−1c

ffiffi
π

p
ZΓðαÞΓðαþ1Þð4DtÞ2−αfαðτtÞ for α> 1

π
Γð1−αÞΓðαþ1Þ4DtgαðτtÞ for α< 1;

(29)

with the functions fαðsÞ and gαðsÞ defined by

fαðsÞ¼ s2−α
Z

∞

0

dyy2e−y2 1F1
�
3

2
;αþ1;y2

�
Γðα;y2sÞ;

gαðsÞ¼ s
Z

∞

0

dyy2e−y2 1F1
�
3

2
;αþ1;y2

�
e−y2s; (30)

where 1F1ða; b; xÞ is a hypergeometric function.
For α < 3, the correlation function Eq. (29) is precisely

of the type (5), and we can apply our scaling Green-Kubo
relation (9) and immediately obtain, for the diffusion
exponent,

ν ¼
�
4 − α for 1 < α < 3

3 for α < 1.
(31)

Similarly, the anomalous diffusion coefficient is
given by

Dνθ
ν

ξ2
¼

8<
:

42−αΓðα−1
2
Þ

Γðαþ1ÞΓðαÞΓðα−1Þð4−αÞ
Z

∞

0

dsðsþ 1Þα−4fαðsÞ for 1 < α < 3

4
ffiffi
π

p
3ΓðαÞΓð1−αÞ

Z
∞

0

dsðsþ 1Þ−3gαðsÞ for α < 1;
(32)

with the time and length scales θ ¼ v2c=D and ξ ¼ v3c=D.
For α > 3, the usual Green-Kubo formula (4) holds. We can
thus identify three different diffusion phases [49]: normal
diffusion with hx2ðtÞi ∼ t when α > 3, anomalous super-
diffusion with hx2ðtÞi ∼ t4−α when 1 < α < 3, and
Richardson-like diffusion with hx2ðtÞi ∼ t3 when α < 1,
which is known from turbulence [50] and has recently been
observed as a transient behavior in ordinary Brownian
motion [51].
As the age of the systems tends to infinity, t ≫ τ, the

velocity correlation function Eq. (29) attains a stationary
limit for α > 2 [14],

Cv;sðτÞ≃ v2α−1c
πΓðα − 2Þ
4ZΓ2ðα − 1

2
Þ ð4DτÞ2−α: (33)

Applying the scaling Green-Kubo relation Eq. (9) to the
stationary correlation function Eq. (33), we find for
2 < α < 3, by virtue of Eq. (11),

Dν;s

ξ2θ−ν
¼ 41−α

ffiffiffi
π

p
Γðα − 1

2
Þðα − 2Þð4 − αÞð3 − αÞ : (34)

Both the stationary and nonstationary expressions for the
anomalous diffusion coefficient are plotted in Fig. 2.
Clearly, the two results differ substantially as the system
approaches the aging phase α < 2. Both results describe the
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D1 = D1,s
Dν

D
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/( ξ
2

θ-ν
)

α

Dν,s

FIG. 2 (color online). Diffusion coefficient Dν=ðξ2θ−νÞ (32) for
cold atoms in optical lattices as a function of the parameter α (red
line); the result for the normal diffusive case α > 3 was taken
from Ref. [53]. The result Dν;s from using the stationary
correlation function Eq. (34) is shown in blue. The coefficient
Dν diverges at the transition from normal to anomalous super-
diffusion (α ¼ 3) and vanishes at the transition from super-
diffusion to t3 diffusion (α ¼ 1). While the values obtained from
the aging and stationary correlation functions agree if the
system is in the normal phase α > 3, they differ significantly
as the system becomes more superdiffusive, clearly signifying the
dependence on the initial condition. As α approaches the
transition to aging behavior at α ¼ 2, the stationary correlation
function ceases to provide a good description of the finite time
system and the corresponding diffusion coefficient diverges.
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asymptotic long-time behavior but correspond to different
initial conditions. For the stationary expression Dν;s,
Eq. (34), the initial velocity probability distribution is
the stationary power-law distribution, Eq. (26). By con-
trast, if the system starts out with a narrow (e.g., Gaussian)
velocity initial condition, the asymptotic mean-square
displacement is described by Dν, Eq. (32). In
Refs. [22,23], it was observed that these two classes of
initial conditions lead to a qualitatively different time
evolution of the velocity probability density. Our scaling
Green-Kubo relation shows that for 2 < α < 3, the initial
condition also persists in the diffusive behavior of the
system in the form of different expressions for the
anomalous diffusion coefficient. For α < 2, there is no
stationary velocity correlation function and the system
ages. Here, Eq. (31) and (32) describe the diffusive
behavior on time scales that are much longer than the
initial relaxation time of the system [see also Eq. (15)]. For
long relaxation times, the diffusion becomes quasiballistic,
as was discussed in Ref. [52].
The diffusion coefficient Dν (32) can be seen (Fig. 2) to

diverge at the transition from normal to superdiffusion
(α ¼ 3) and, in contrast, to vanish at the transition from
superdiffusion to t3 diffusion (α ¼ 1). This irregular
behavior of the diffusion coefficient at the transitions
justifies referring to the three different regimes as diffusion
phases, as it indicates a change in the qualitative dynamics
of the system.

B. Fractional Langevin equation

Next, we will consider the motion of a tracer particle in a
crowded environment under the influence of external noise.
The motion is governed by the fractional Langevin equa-
tion [24,25,28,54–59]

v
: ðtÞ ¼ −

Z
t

0

dt0γðt − t0Þvðt0Þ þ 1

m
ηðtÞ; (35)

where the memory kernel γðtÞ describes the retarding
friction experienced by the tracer in a crowded environment
[27], like the cytoplasm of biological cells. This friction
kernel is given by

γðtÞ ¼ γρ
ΓðρÞ t

ρ−1; (36)

with 0 < ρ < 1 and a generalized friction coefficient γρ.
If the noise ηðtÞ is thermal equilibrium noise, it is related
to the friction kernel via the fluctuation-dissipation
theorem

hηðt2Þηðt1Þi ¼ mkBTγðt2 − t1Þ; (37)

which expresses the fact that both friction and internal
noise are due to interaction with the thermal bath. In this
case, Eqs. (35) and (36) describe the motion of the tracer
in a crowded equilibrium environment, which is known to
exhibit subdiffusion with exponent ν ¼ 1 − ρ [24,25]. If
ηðtÞ is considered to be an external noise driving the
system out of equilibrium, the fluctuation-dissipation
theorem does not hold, and the system may become
superdiffusive [28,29]. In living cells, this external noise
is due to the action of molecular motors and it drives
active transport [28]. It requires an external source of
energy (e.g., ATP) to continuously keep the system out of
equilibrium [60].
Like the equilibrium noise, we take the external noise to

be a Gaussian, power-law correlated process. However, we
allow the external noise to be nonstationary, which, as
shown in Ref. [29], is necessary to explain the super-
diffusion exponent observed in several experiments
[60,61]. More precisely, we define the autocorrelation of
the noise in terms of its Laplace transform ~ηðsÞ ¼R∞
0 dte−stηðtÞ [29],

h~ηðs2Þ~ηðs1Þi ¼ F λ
ðs2s1Þ−λ

2

s2 þ s1
; (38)

with λ > ρ and the constantF λ describing the magnitude of
the external noise. The condition λ > ρ ensures that the
external noise correlations decay more slowly than those of
the internal noise. In the time domain, the noise correlations
read

hηðtþ τÞηðtÞi ¼ ð−1Þ−λ
2
F λ

Γ2ðλ
2
Þ τ

λ−1B
�
− t
τ
;
λ

2
;
λ

2

�
; (39)

where Bðx; a; bÞ is the incomplete Beta function. The noise
process has a stationary autocorrelation for λ < 1 in the
limit t → ∞, specifically, hηðtþ τÞηðtÞi ∝ τλ−1. For λ > 1,
on the other hand, the noise correlations are nonstationary;
here, the variance of the external noise increases with time
as hη2ðtÞi ∝ tλ−1 [62].
The velocity autocorrelation can be obtained by solving

Eq. (35) in Laplace space and then inverting the
Laplace transform. The exact solution can be expressed
in terms of the generalized Mittag-Leffler function
Ea;bðxÞ [29],

Cvðtþ τ; tÞ ¼ F λ

m2

Z
t

0

dt0Gρ;λðτ þ t0ÞGρ;λðt0Þ

with Gρ;λðtÞ ¼ t
λ
2Eρþ1;λ

2
þ1ð−γρtρþ1Þ: (40)

The scaling properties of this expression become
apparent when considering the limit of long times
τ, t ≫ γ−1=ð1þρÞ

ρ ,
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Cvðtþ τ; tÞ≃ F λ

m2γ2ρΓðλ2 − ρÞΓðλ
2
− ρþ 1Þ

�
ðtþ τÞλ2−ρ−1tλ2−ρ þ ð−1Þρ−λ

2

�
λ

2
− ρ − 1

�
τλ−2ρ−1

× B

�
− t
τ
;
λ

2
− ρþ 1;

λ

2
− ρ − 1

��
: (41)

Casting this in the form of Eq. (5), we have

Cvðtþ τ; tÞ≃ Ctν−2ϕ
�
τ

t

�
with ν ¼ λ − 2ρþ 1; C ¼ F λ

m2γ2ρΓðν−12 ÞΓðνþ1
2
Þ

and ϕðsÞ ¼ ð1þ sÞν−32 þ ð−1Þ1−ν2 ν − 3

2
sν−2B

�
− 1

s
;
νþ 1

2
;
ν − 3

2

�
: (42)

We can immediately read off the diffusion exponent
ν ¼ λ − 2ρþ 1 and find that the system is superdiffusive
for λ > 2ρ. Using our scaling Green-Kubo relation (9), we
can then calculate the anomalous diffusion coefficient by
integrating the scaling function ϕðsÞ,

Dν ¼
F λ

m2γ2ρ

1

2νΓ2ðνþ1
2
Þ : (43)

In the regime 1 < ν < 2, that is, for sub-ballistic super-
diffusion, the velocity autocorrelation Eq. (41) attains a
stationary limit,

Cv;sðτÞ≃ F λ

πm2γ2ρ
Γð2 − νÞ sin

�
π
ν − 1

2

�
τν−2: (44)

Similarly to Sec. III A, we can apply the scaling Green-
Kubo relation Eq. (9) to both Eqs. (42) and (44). From the
latter, we obtain

Dν;s ¼
F λ

m2γ2ρ

Γð2 − νÞ sin ðπ ν−1
2
Þ

πνðν − 1Þ : (45)

The results for the anomalous diffusion coefficient are
shown in Fig. 3. Once again, we observe significant
differences between using the stationary and aging corre-
lation functions as the diffusion exponent increases. In
contrast to the system discussed in Sec. III A, the stationary
state is not fully described by the corresponding velocity
distribution. Since the fractional Langevin equation (35) is
non-Markovian, we need to specify the entire history of the
process to determine the correct stationary state. Even
if the velocity is initially distributed according to the
stationary distribution, which is Gaussian with width
hv2is ¼ ðF λ=m2Þ R∞

0 dtG2
ρ;λðtÞ, we still obtain the nonsta-

tionary result Eq. (43) for the diffusion coefficient. The
stationary result Eq. (45) is only obtained if we explicitly let
the process evolve for some long time t0 before starting the
measurement of the mean-square displacement.
In the regime ν > 2, the velocity autocorrelation Eq. (41)

is superaging and the variance of the velocity increases with

time. The results for the diffusion exponent ν ¼ λ − 2ρþ 1
and the diffusion coefficient Dν, Eq. (43), remain
unchanged. However, similarly to the superaging case in
Sec. III A, we then find faster-than-ballistic diffusion in this
regime.

C. Blinking quantum dots and Lévy walk

As our final example for the application of the scaling
Green-Kubo relation, we study the time-dependent inten-
sity IðtÞ of the light emitted by nanocrystals embedded in a
disordered medium. This deviates from the previous dis-
cussion insofar as the observables of interest are no longer
velocity and position. Instead, we identify the velocity with
the intensity and the total number of emitted photons,
which is proportional to the time integral over the intensity,
as the position. The intensity exhibits a phenomenon called
blinking: The quantum dot will emit light during some

1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Dν

Dν,s

D
ν

/(
F λ

γ ρ-2
)

ν

FIG. 3 (color online). The anomalous diffusion coefficient
Dν=ðF λγ

−2
ρ Þ for the fractional Langevin equation as a function

of the diffusion exponent ν. The red line is the result using the
aging correlation function Eq. (42), and the blue line is the one
from the stationary correlation function Eq. (44). Close to the
threshold to normal diffusion ν ¼ 1, both values agree; however,
as the diffusion exponent increases, the two results deviate from
each other. At the transition to the nonstationary phase (ν ¼ 2),
the stationary result diverges.
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periods and remain dark during others [63–65]. The
durations of these on periods and off periods are found
to be distributed according to a power law whose exponent
is such that the average on and off time is infinite (i.e., of
the order of the measurement time), leading to aging in the
intensity autocorrelation function [7,66]. This model is the
familiar Lévy walk [12,31,36,67], which is a popular
stochastic framework with many applications. As men-
tioned in the Introduction, Zumofen and Klafter [12]
showed that the diffusivity in this model is sensitive to
the initial conditions. Here, we demonstrate the applicabil-
ity of our scaling Green-Kubo relation, while previous
works used renewal theory approaches [7,34].
We consider the special case where the on (þ) and

off (−) times of a blinking quantum dot follow the
same power-law distribution ψþðtÞ ¼ ψ−ðtÞ ¼ ψðtÞ∼
ðt=tcÞ−μ−1 for t ≫ tc with 0 < μ < 2. Thus, the dot is in
the on state with intensity I ¼ 1 for a waiting time drawn
from ψðtÞ, after which it switches to the off state I ¼ 0,
again with a dwell time drawn from ψðtÞ, and so on. The
average on/off time t̄ only exists for μ > 1 and is infinite for
0 < μ < 1. For this form of the distribution, the aging
intensity autocorrelation for long times and 0 < μ < 1 has
been explicitly obtained in Refs. [7,34] by mapping the
problem onto a Lévy walk,

hIðtþ τÞIðtÞi≃ 1

2

�
1 − sinðπμÞ

2π
B

�
1

1þ t
τ

; 1 − μ; μ

��
:

(46)

Comparing this to the general scaling form of the corre-
lation function Eq. (5), we find ν ¼ 2, C ¼ 1=2, and

ϕðsÞ ¼ 1 − sinðπμÞ
2π

B

�
s

1þ s
; 1 − μ; μ

�
: (47)

Figure 4 shows the correlation function Eq. (46) for μ ¼ 0.6
obtained from numerical simulations. Plotting the intensity
autocorrelation as a function of τ=t results in a data collapse
without any rescaling, indicating the pure aging behavior
for 0 < μ < 1. The total number of photons nðtÞ emitted by
the quantum dot during time t is proportional to the time
integral of the intensity, nðtÞ ¼ I0

R
t
0 dt

0Iðt0Þ, with I0 the
physical intensity of the dot in the on state. Consequently,
ν ¼ 2 in the scaling Green-Kubo relation Eq. (9) immedi-
ately implies that the second moment of the photon number
exhibits ballistic scaling [see Eq. (13)] [31]:

hn2ðtÞi≃ I2
0

2

�
1 − μ

2

�
t2: (48)

Since the average intensity is asymptotically constant,
hIðtÞi≃ 1=2, we find, for the variance of the photon
number,

hδn2ðtÞi ¼ hn2ðtÞi − hnðtÞi2 ≃ 2D2t2

with D2 ¼
I2
0

8
ð1 − μÞ; (49)

which also scales ballistically. This agrees with the result
obtained in Ref. [38] using the probability distribution
Pðn; tÞ of the photon number and with the experimental
observation of a linear increase of Mandel’s Q parameter
Q ¼ hδn2ðtÞi=hnðtÞi [68].
For 1 < μ < 2, we find, from the general results of

Ref. [7],

hIðtþ τÞIðtÞi≃1

4

�
1þ tμc

ðμ−1Þt̄ ½τ
1−μ− ðtþ τÞ1−μ�

�
; (50)

which for long times t ≫ τ approaches the stationary
limiting form

hIðtþ τÞIðtÞis ≃ 1

4

�
1 − tμc

ðμ − 1Þt̄ τ
1−μ

�
: (51)

Because of the constant term, these expressions are not
precisely of the scaling form (5), respectively, (10). This
constant term leads to a ballistic contribution in the second
moment of the photon number. However, by considering
the fluctuations of the intensity δIðtÞ ¼ IðtÞ − 1=2, which
are related to the fluctuations of the photon number by
δnðtÞ ¼ I0

R
t
0 dt

0δIðtÞ, we can once again apply the scaling
Green-Kubo relation (9) to find sub-ballistic scaling for the
variance of the photon number [31]

hδn2ðtÞi≃ 2Dνtν; (52)
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FIG. 4 (color online). Aging correlation function for the
blinking quantum dots. The plots were obtained from numerical
Lévy walk simulations with tc ¼ 1 and μ ¼ 0.6. Since the
correlation function is of the usual aging type (ν ¼ 2), no
rescaling is necessary for the curves to collapse onto a single
one. Integrating this curve, we obtain the coefficient D2 ≃ 0.043
in good agreement with the result D2 ¼ 0.05 from Eq. (48).
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with ν ¼ 3 − μ, and

Dν ¼
I2
0t

μ
c

4ð3 − μÞð2 − μÞt̄ ; (53)

respectively,

Dν;s ¼
I2
0t

μ
c

4ð3 − μÞð2 − μÞðμ − 1Þt̄ : (54)

Similarly to our previous two examples, we have two
different expressions for the anomalous diffusion coeffi-
cient depending on the initial preparation of the system. As
noted, this is in agreement with the result obtained in
Ref. [12] using a different approach. Both expressions for
the diffusion coefficient are shown in Fig. 5. In contrast to
the cases discussed in Secs. III A and III B, the aging
correlation function Eq. (46) does not increase as a function
of t for t ≫ τ but tends to a constant value. As a
consequence, the stationary diffusion coefficient does not
diverge as we approach the aging regime μ < 1. For μ < 1,
there is no actual stationary correlation function; however,
depending on whether the measurement time is large or
small compared to the aging time t0, we still obtain two
different values for the anomalous diffusion coefficient (see
Sec. II C). Finally, for μ > 2, the usual Green-Kubo relation
is applicable and the variance of the photon number
increases linearly with time.
While the explicit calculation of the intensity correla-

tions and photon statistics is possible for the two-state
model used in Refs. [7,38], this is no longer the case for
more realistic models that take into account that there may

be more than single on-state or exponential cutoff on the
power-law statistics of on and/or off times [69]. Since our
scaling Green-Kubo relation Eq. (9) only relies on the
asymptotic scaling of the intensity correlation function, it
can be used to relate intensity correlations and photon
statistics even for models that are only tractable
numerically.

IV. DISCUSSION

The scaling Green-Kubo relation (9) extends the usual
Green-Kubo formula (4) to the superdiffusive, nonsta-
tionary regime. It enables the direct evaluation of the
mean-square displacement hx2ðtÞi from the knowledge
of the scaling properties of the velocity correlation function
Cvðtþ τ; tÞ. In particular, a scaling function replaces the
stationary autocorrelation in the usual Green-Kubo formula
for the determination of the diffusion coefficient. The
scaling Green-Kubo relation is applicable to slowly
decaying stationary power-law correlation functions, as
well as nonstationary ones exhibiting aging or even super-
aging. For the latter two classes, it relates, for the first time,
the anomalous diffusion coefficient to the scaling of the
correlation function in a simple way.
This relation between an aging correlation function and

the diffusion coefficient turns out to be important even in
cases where a stationary velocity correlation function does
exist but decays slowly. Different classes of initial con-
ditions lead to different expressions for the diffusivity: Dν;s
[Eqs. (34), (45) and (54)] for a stationary initial condition
and Dν [Eqs. (32), (43) and (53)] if the system is not
initially in the stationary state (see also Figs. 2, 3 and 5).
Generally, which one of these two expressions for the
diffusivity is appropriate depends on the time scales one is
interested in: As long as the measurement time is small
compared to the aging time t0 [see Eq. (15)], the anomalous
diffusion coefficient is given by the stationary value Dν;s.
Once the measurement time becomes comparable to t0, the
diffusion coefficient will start to deviate from its stationary
value, eventually reaching the nonstationary value Dν for
times much longer than t0. Because of this sensitivity on the
initial conditions, the measurement and interpretation of
anomalous transport coefficients is not as straightforward
as for normal transport, where the coefficients are generally
unique. For cold atoms in optical lattices (Sec. III A) and
the fractional Langevin equation (Sec. III B), the stationary
diffusion coefficientsDν;s diverge as we approach the aging
regime. The persistence of the initial condition is directly
related to the scale invariance of the velocity correlation
function: There exists no typical time scale on which the
correlations decay, and thus, the only relevant time scale is
set by the aging t0, which is not an intrinsic property of the
system but an external parameter determined by its initial
preparation.
Here, we discussed the persistence of the initial con-

dition in the context of superdiffusive dynamics. Recently,
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FIG. 5 (color online). The anomalous diffusion coefficient
Dν=ðI2

0t
μ−1
c Þ for the variance of the photon number. Here, we

assumed a waiting-time distribution of the form ψðtÞ ¼ 0 for t <
tc and ψðtÞ ¼ μ=tcðt=tcÞ−μ−1 for t > tc. The stationary result Dν;s
[Eq. (54), blue line] differs from the nonstationary one Dν

[Eq. (53), red line] but is finite at the transition to the aging
phase μ < 1. The blue dashed line is the result obtained for long
aging times t0 in the aging regime.
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the dependence of the diffusion coefficient on the initial
condition has been quantified for single-file diffusion,
which is subdiffusive and can be related to fractional
Brownian motion [70], indicating that this effect may be
of general importance for long-range correlated systems.
Another interesting question is how the sensitivity to initial
conditions translates to the time-averaged diffusivity,
where, instead of averaging over an ensemble of trajecto-
ries at a given time, the mean-square displacement is
computed from a time average over a single trajectory.
The dependence of the time-averaged diffusivity on the
initial conditions has so far only been discussed for special
cases [71–74], and whether it will correspond to the
stationary or nonstationary expression obtained here or
to neither is an open question.
We have shown that the three different types of scaling

correlation functions (stationary, aging, and superaging)

appear in a variety of physical models. The three examples
considered in this work are of rather different types of
stochastic models, yet they can all be treated using the
scaling Green-Kubo relation: The diffusion with a 1=v
friction force obeys a Markovian, nonlinear, non-Gaussian
Langevin dynamics, while in the case of the fractional
Langevin equation, the dynamics is linear and Gaussian but
non-Markovian. The power-law blinking of quantum dots
can be mapped onto a Lévy walk, which represents yet
another class of stochastic models and is neither Markovian
nor Gaussian. Sample trajectories for the three models are
shown in Fig. 6, highlighting the differences between them.
Yet because of their underlying scale invariance, the scaling
Green-Kubo relation can be used in all three cases to
determine the diffusive ensemble properties, which are
summarized in Table I. Our scaling Green-Kubo relation
thus appears to be widely applicable and should therefore
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FIG. 6. Sample trajectories for the three systems discussed in Sec. III. Top: Diffusion with a nonlinear 1=v friction force. Middle:
Fractional Langevin equation with external noise. Bottom: Lévy walk alternating between �v0. The left figure depicts the velocity of a
single trajectory as a function of time; the right figure shows the corresponding position. The parameters were chosen such that the
diffusion exponent for all three systems is ν≃ 1.5 and the (dimensionless) anomalous diffusion coefficient isDν ≃ 0.25. Despite similar
diffusive properties, the actual trajectories are apparently very different.

TABLE I. Summary of the aging and diffusive properties for the three systems discussed in Secs. III A, III B and III C. The first
column lists the system and the relevant parameters. The second column states the parameter range in which the scaling Green-Kubo
relation is applicable; the resulting diffusion exponent is given in the third column. The aging properties of the correlation function are
given in the fourth column. The fifth column states whether the diffusion coefficient depends on the initial condition and, if so, whether it
explicitly depends on the aging time t0.

Scaling
Green-Kubo Diffusion exponent ν Correlation function Diffusion coefficient

Nonlinear 1=v friction Friction
parameter 1

2
< α < ∞

α < 3 1 for α > 3
4 − α for 1 < α < 3

3 for α < 1

Stationary for α > 2
Superaging for α < 2

Unique for α > 3
Dν ≠ Dν;s for 2 < α < 3
Dν ≠ Dt=t0

ν for α < 2
Fractional Langevin equation
Friction exponent 0 < ρ < 1
Noise exponent λ > ρ

λ > 2ρ λ − 2ρþ 1 Stationary for λ < 2ρþ 1
Superaging for λ > 2ρþ 1

Dν ≠ Dν;s for λ < 2ρþ 1
Dν ≠ Dt=t0

ν for λ > 2ρþ 1

Blinking quantum dots
On/off time exponent μ > 0

μ < 2 1 for μ > 2
3 − μ for 1 < μ < 2

2 for μ < 1

Stationary for μ > 1
Aging for μ < 1

Unique for μ > 2
Dν ≠ Dν;s for α < 2
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constitute an important tool for investigating the diffusive
properties of many systems.
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APPENDIX: RETARDED AND
ACCELERATED AGING

Our scaling correlation function Eq. (5) is of the form

Cðt; tþ τÞ≃ Ctν−2ϕ
�
τ

t

�
: (A1)

In this case, the correlation time tc is given by the age t of
the system. A more general case is a correlation time that
has a different functional dependence on the age; i.e., tcðtÞ
is some monotonously increasing function with tcð0Þ ¼ 0.
The corresponding correlation function is then of the form

Cðt; tþ τÞ≃ Ctν−2ϕ
�

τ

tcðtÞ
�
: (A2)

The mean-square displacement is given by

hx2ðtÞi≃ 2C
Z

t

0

dt2

Z
t2

0

dt1tν−21 ϕ

�
t2 − t1
tcðt1Þ

�
: (A3)

We define s ¼ ðt2 − t1Þ=tcðt1Þ and obtain

hx2ðtÞi≃ 2C
Z

t

0

dt2

Z
∞

0

ds

�
−∂t1ðsÞ

∂s
�
tν−21 ðsÞϕðsÞ; (A4)

where t1ðsÞ is the solution of the equation,

t2 − t1
tcðt1Þ

¼ s: (A5)

For general tcðtÞ, this equation is not solvable analytically.
However, the asymptotic behavior of t1ðsÞ is given by

t1ðsÞ≃
8<
:

t2 − stcðt2Þ for s ≪ t2
tcðt2Þ

~tcðt2sÞ for s ≫ t2
tcðt2Þ ;

(A6)

where ~tcðxÞ denotes the inverse function of tc. For the
particular choice

tcðtÞ ¼ ta

�
t
ta

�
δ

; (A7)

with some time scale ta and 0 < δ < 2, this gives us

t1ðsÞ≃
8<
:

t2 − sta
�
t2
ta

�
δ

for s ≪
�
t2
ta

�
1−δ

ta
�
s ta
t2

�−1
δ for s ≫

�
t2
ta

�
1−δ

:
(A8)

For the expression appearing in Eq. (A4), we have

�
−∂t1ðsÞ

∂s
�
tν−21 ðsÞ≃

8<
:
t1−δa tνþδ−2

2 for s≪
�
t2
ta

�
1−δ

1
δ t

ðν−1Þðδ−1Þ
δ

a t
ν−1
δ
2 s

1−ν−δ
δ for s≫

�
t2
ta

�
1−δ

:

(A9)

Plugging this into Eq. (A4), we obtain

hx2ðtÞi≃ 2C
Z

t

0

dt2

�
t1−δa tνþδ−2

2

Z ðt2taÞ
1−δ

0

dsϕðsÞ

þ 1

δ
t
ðν−1Þðδ−1Þ

δ
a t

ν−1
δ
2

Z
∞

ðt2taÞ
1−δ

dss
1−ν−δ

δ ϕðsÞ
�
: (A10)

The asymptotic behavior of this expression depends on the
asymptotic behavior of ϕðsÞ, which we assume to be of the
following form,

ϕðsÞ≃
�

cls−δl with δl < 1 for s ≪ 1

cus−δu with δu > 1−ν
δ for s ≫ 1:

(A11)

The case δ < 1.—For δ < 1, the upper bound of the first
and the lower bound of the second s integral are large for
t2 ≫ ta. If δu > 1,wemay thenextend theupperboundof the
first integral to infinity; otherwise, the integral is dominated
by the value at the upper bound and thus the large-s behavior
of the scaling function. The s integral in the second termonly
depends on the large-s behavior. We then have

hx2ðtÞi≃ 2C ×

8<
:

1
νþδ−1 t1−δa tνþδ−1 R∞

0 dsϕðsÞ for δu > 1

cuð1þ1
δÞ

νþðδ−1Þδu t
ð1−δÞδu
a tνþðδ−1Þδu for δu < 1.

(A12)

We thus have two different results for the diffusion
coefficient and exponent depending on the large-s behavior
of the scaling function: For δu < 1, i.e., when the scaling
function ϕðsÞ decays slowly or even increases at large s, the
diffusion coefficient is determined by this large-s behavior.
This agrees with the physical intuition, since for δ < 1, the
system ages more slowly and thus the low-age behavior
(corresponding to t ≪ τ, respectively, large s in the
correlation function) is important. For 0 < δu < 1, the
diffusion is retarded (i.e., the diffusion exponent is smaller
than ν), while it is accelerated for δu < 0. On the other
hand, if the scaling function decays very fast (δu > 1), the
contribution from the low-age regime is numerically small
and of the same order as the high-age one. Thus, the
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diffusion coefficient depends on the detailed shape of ϕðsÞ
and not only on the large-s expansion. In this case, the
diffusion is always retarded and the system may even
become subdiffusive for δ < 2 − ν.
The case δ > 1—For δ > 1, the upper bound of the first

and the lower bound of the second s integral are small for

t2 ≫ ta. If δl < ð1 − νÞ=δ, we may then extend the lower
bound of the second integral to zero; otherwise, the integral
is dominated by the value at the lower bound and thus the
small-s behavior of the scaling function. The s integral in
the first term only depends on the small-s behavior. We
then have

hx2ðtÞi≃ 2C ×

8<
:

δ
νþδ−1 t

ðν−1Þðδ−1Þ
δ

a t
νþδ−1

δ

R∞
0 dss

1−ν−δ
δ ϕðsÞ for δl < 1−ν

δ

cuð1þ1
δÞ

νþðδ−1Þδl t
ð1−δÞδl
a tνþðδ−1Þδl for δl > 1−ν

δ :
(A13)

Similarly to the case δ < 1, we find two qualitatively
different behaviors, though now depending on the small-s
expansion of the scaling function, as the system now ages
faster and thus the high-age behavior is important. For
δl > ð1 − νÞ=δ, the scaling function diverges at small s or
slowly tends to zero, and the high-age behavior (t ≫ τ or
small s) dominates the diffusion coefficient. Depending on
the sign of γl, the diffusion may be retarded or accelerated.
For δl < ð1 − νÞ=δ, the scaling function rapidly tends to
zero for small s, and thus the high-age contribution and the
low-age one are of the same order. As before, the diffusion
coefficient depends on the entire domain of ϕðsÞ.
For δ ¼ 1, both the low-age and high-age contributions

are always of the same order, and the behavior of ϕðsÞ over
the whole range of its argument determines the diffusion
coefficient. This underlines the special importance of the
“true” scaling type of correlation functions with δ ¼ 1
discussed in the main body of the paper and in the
examples.
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