dc.contributor.author
Trendelkamp-Schroer, Benjamin
dc.contributor.author
Noé, Frank
dc.date.accessioned
2018-06-08T04:10:13Z
dc.date.available
2015-11-04T13:23:04.579Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16710
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20891
dc.description.abstract
Direct simulation of biomolecular dynamics in thermal equilibrium is
challenging due to the metastable nature of conformation dynamics and the
computational cost of molecular dynamics. Biased or enhanced sampling methods
may improve the convergence of expectation values of equilibrium probabilities
and expectation values of stationary quantities significantly. Unfortunately
the convergence of dynamic observables such as correlation functions or
timescales of conformational transitions relies on direct equilibrium
simulations. Markov state models are well suited to describe both stationary
properties and properties of slow dynamical processes of a molecular system,
in terms of a transition matrix for a jump process on a suitable
discretization of continuous conformation space. Here, we introduce
statistical estimation methods that allow a priori knowledge of equilibrium
probabilities to be incorporated into the estimation of dynamical observables.
Both maximum likelihood methods and an improved Monte Carlo sampling method
for reversible transition matrices with fixed stationary distribution are
given. The sampling approach is applied to a toy example as well as to
simulations of the MR121-GSGS-W peptide, and is demonstrated to converge much
more rapidly than a previous approach of Noé [J. Chem. Phys.128, 244103 (Year:
2008)10.1063/1.2916718].
en
dc.rights.uri
http://publishing.aip.org/authors/web-posting-guidelines
dc.subject.ddc
500 Naturwissenschaften und Mathematik
dc.title
Efficient Bayesian estimation of Markov model transition matrices with given
stationary distribution
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Chemical Physics. - 138 (2013), 16, Artikel Nr. 164113
dcterms.bibliographicCitation.doi
10.1063/1.4801325
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4801325
refubium.affiliation
Mathematik und Informatik
de
refubium.funding
OpenAccess Publikation in Allianzlizenz
refubium.mycore.fudocsId
FUDOCS_document_000000023414
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005628
dcterms.accessRights.openaire
open access