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Direct simulation of biomolecular dynamics in thermal equilibrium is challenging due to the
metastable nature of conformation dynamics and the computational cost of molecular dynamics.
Biased or enhanced sampling methods may improve the convergence of expectation values of equi-
librium probabilities and expectation values of stationary quantities significantly. Unfortunately the
convergence of dynamic observables such as correlation functions or timescales of conformational
transitions relies on direct equilibrium simulations. Markov state models are well suited to describe
both stationary properties and properties of slow dynamical processes of a molecular system, in
terms of a transition matrix for a jump process on a suitable discretization of continuous confor-
mation space. Here, we introduce statistical estimation methods that allow a priori knowledge of
equilibrium probabilities to be incorporated into the estimation of dynamical observables. Both max-
imum likelihood methods and an improved Monte Carlo sampling method for reversible transition
matrices with fixed stationary distribution are given. The sampling approach is applied to a toy
example as well as to simulations of the MR121-GSGS-W peptide, and is demonstrated to con-
verge much more rapidly than a previous approach of Noé [J. Chem. Phys. 128, 244103 (2008)].
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801325]

I. INTRODUCTION

Characterization of the conformational dynamics of pro-
teins and other biomolecules in thermal equilibrium includes
the identification of their metastable states, and quantification
of their populations and transition rates. Such a characteriza-
tion is essential to analyze and potentially manipulate biologi-
cally important conformational transitions, including folding,
ligand binding, and aggregation. Unfortunately, a direct ob-
servation of dynamical processes with an atomistic resolu-
tion is impossible because the scale of conformation dynam-
ics lies well below the diffraction limit of optical methods.
Spectroscopic methods that provide information in atomistic
detail such as X-ray crystallography do usually only provide
information about static quantities. NMR spectroscopy meth-
ods provide only indirect observations of dynamical processes
via relaxation dispersion correlations whose interpretation is
challenging and do not provide direct structural information.
Single-molecule spectroscopic methods can probe the dynam-
ical fluctuations of one to two observables directly, but they do
not reveal molecular structures.

The recent increase in computing power has enabled
the study of conformation dynamics in atomistic detail via
direct molecular dynamics simulations.1–6 Nonetheless, the
metastable nature of conformation dynamics7–11 in combi-
nation with the necessary explicit treatment of fast degrees
of freedom in the numerical integration of the equations of
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motions renders the spontaneous observation of rare events
on the milliseconds timescales or slower difficult. As a re-
sult, one faces severe difficulties when trying to converge ex-
pectation values of observables depending on slow processes,
such as the implied time scales of large scale conformational
changes.12

The recent years have seen the development of a host
of biased or enhanced sampling methods to accelerate rare
events, and thus to permit the efficient exploration of the
system’s relevant conformations and estimation of at least
its thermodynamic quantities, such as the stationary proba-
bilities of states and stationary expectation values. To name
only some of the best-known examples, replica exchange or
parallel tempering methods facilitate the hopping over en-
ergetic barriers by exchanging molecular conformations be-
tween simulations at different temperatures.13, 14 Flooding
methods obtain stationary probabilities by filling up the free
energy landscape according to the frequency of visits by
the evolving trajectory.15, 16 Umbrella sampling17 proceeds by
choosing an appropriate re-weighting function restricting the
chain to a subspace relevant to the estimation of a chosen ob-
servable. An improved version using the weighted histogram
analysis method18 guides the simulation along a multidimen-
sional hyper-surface specified by a set of a priori chosen re-
action coordinates.19 For a short pedagogical overview of en-
hanced ensemble methods see Ref. 20. Applications include
replica exchange folding studies of a small RNA hairpin,21

single-copy tempering for trpzip2, trp-cage, and the villin
headpiece,22 as well as reconnaissance meta-dynamics for the
binding of benzamidine to trypsin.23 Examples for problems
that have also been successfully treated are first and second
order phase transitions in lattice spin systems.24

0021-9606/2013/138(16)/164113/14/$30.00 © 2013 AIP Publishing LLC138, 164113-1
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While biased or enhanced sampling methods can gen-
erate estimates of equilibrium quantities efficiently, they
usually do not preserve the equilibrium dynamics. Thus,
dynamical observables such as rates or time-correlation
functions have to be estimated using other methods, chiefly
from direct equilibrium molecular dynamics simulations. An
approach frequently used to integrate and analyze molecular
dynamics data is Markov modeling.11, 25–31 Markov models
approximate the continuous phase space dynamics in terms
of a discrete space Markov jump process. A particular
advantage of this approach is that Markov processes have
been extensively studied in mathematics so that there are
a large number of rigorous results available. The construc-
tion of Markov models proceeds through first choosing
a suitable discretization of conformation space and then
estimating a transition probability matrix from counted
transitions between conformational subsets specified by
the discretization.25 Choosing the discretization so as to
achieve an accurate Markov model is a topic of current
research.29, 32–34 As shown in Ref. 32 the approximation error
can be bounded and vanishes as the discretization gets finer
and the lag time is increased. A recently outlined variational
method35 can be employed to approximate relevant spectral
properties of the transition operator by an application of the
famous Rayleigh-Ritz principle. An approach using basis
functions and variational inequalities makes it possible to
connect to established methods from electronic structure
calculations and may proof useful in iteratively improving
conformation space discretization. For an overview of the
Markov state model approach to conformation dynamics
see Ref. 31. The Markov state model approach has been
able to reconstruct complex molecular processes such as
protein folding,1, 11, 25–31, 36, 37 natively unstructured protein
dynamics,34 and protein-ligand binding38–42 from computer
generated trajectories. In addition the Markov model frame-
work allows the comparison of simulation driven predictions
with experimental findings in a consistent manner.43–46

Since enhanced and biased sampling methods can sig-
nificantly improve the convergence of stationary quantities in
the presence of long timescales, while direct molecular dy-
namics simulations can probe dynamical quantities depend-
ing on short timescales, it would be desirable to combine the
advantages of both approaches. A natural mathematical basis
to foster this combination is detailed balance of the dynamics.
Detailed balance states that under equilibrium conditions, the
ratio of stationary probabilities between two states is equal to
the inverse ratio of transition rates or probabilities between
them. On the microscopic scale, detailed balance is a natural
consequence of the time inversion invariance of the micro-
scopic equations of motion and the Gaussian white noise na-
ture of the stochastic fluctuations (p. 88ff. of Ref. 47). When
using Markov models, microscopic detailed balanced directly
translates into detailed balance on the level of Markov states.
Therefore, it would be desirable to include prior information
of the stationary distribution into the estimation of dynamical
observables such as correlation functions and time scales or
rates of conformational changes. One could, for example, use
well converged equilibrium probabilities estimated on confor-
mational subsets constituting a suitable discretization from an

extended ensemble simulation and generate observations of
equilibrium fluctuations from a standard equilibrium simu-
lation. The precise knowledge of the stationary probabilities
could, for example, be used to obtain sharper estimates of dy-
namical quantities such as timescales for large scale confor-
mational transitions.

Detailed balance is now commonly used as a constraint
to guide the maximum likelihood estimation of Markov model
transition matrices from observed transition counts.31, 48 How-
ever, these existing approaches do not permit to explicitly
include prior knowledge of the stationary distribution. Be-
yond maximum likelihood estimates, the estimation of sta-
tistical uncertainty stemming from the fact that only finitely
many transition counts have been observed, is crucial to allow
a meaningful comparison with expectation values obtained
from other simulations as well as with observations from ex-
periments to be made.49 Furthermore, quantification of statis-
tical uncertainties is a prerequisite to guide an adaptive sam-
pling approach that aims at reducing them efficiently.48, 50, 51

In Singhal et al.50 direct sampling of transition matrices was
applied to calculate the distribution of mean first passage
times. A computationally efficient procedure to estimate the
variance together with the mean based on a Gaussian approx-
imation of the distribution of transition matrices and a first
order Taylor expansion of the target observable was also de-
veloped. In Ref. 51 the method was extended to the estima-
tion of eigenvalues and eigenvectors. In Ref. 52, a similar
perturbation method was used to evaluate the statistical er-
ror of committor probabilities. In Ref. 53 a related approach
based on perturbation theory of spectral subspaces is devel-
oped in order to achieve a refinement of a grid-free confor-
mation space discretization. A full Bayesian approach for
estimating statistical errors including the detailed balance
constraint was introduced in Ref. 54. In a subsequent
study, we have extended the formalism by also includ-
ing statistical uncertainties of spectroscopic observables.49

Reference 55 has used a different approach, an edge rein-
forced random walk, to sample reversible transition matrices.
As yet, the Markov chain Monte Carlo (MCMC) approach
in Ref. 54 is the only approach that permits to explicitly in-
clude prior knowledge of the stationary distribution into the
estimation of the probability distribution of transition matri-
ces. However, this sampler has rather poor mixing properties,
thus requiring many iterations and a high computational load
before the probability distributions can be estimated reliably.

In the following we will introduce efficient methods to
include prior knowledge of the stationary distribution into
reversible transition matrix estimates: (1) Maximum likeli-
hood estimation methods are given that either solve a con-
strained convex optimization problem using standard op-
timization libraries, or proceed via an iterative likelihood
maximization algorithm. (2) An efficient Gibbs method is
introduced to sample the conditional densities of individual
transition matrix elements, offering improved convergence
properties over the previous approach in Ref. 54. The es-
timation and sampling methods described here are imple-
mented in the EMMA Markov model toolkit.56 The maximum
likelihood estimation for fixed stationary distribution can be
performed using the EMMA command mm_estimate and
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the Gibbs sampling of reversible transition matrices with
fixed stationary distribution is available via the command
mm_transitionMatrixSampling.

II. PROBABILITY DISTRIBUTIONS
FOR TRANSITION MATRICES

If one has at hand only a finite observation X1, . . . , XN

of a Markov jump process there are usually an infinite num-
ber of transition matrices P that are compatible with the given
data. In the following we assume that one can directly observe
transitions between individual microstates i ∈ 1, . . . , n. A sin-
gle entry pij of a transition matrix quantifies the probability to
make a transition to state j given that you have started in i,

pij = P (Xk+1 = j |Xk = i).

If the microstate jump process is Markovian the probability
of observing a certain realization of the process X1, . . . , XN

depends only on the number of transitions between pairs of
states in X1, . . . , XN together with the probability to start in
X1. Thus the matrix of transition counts C together with the
probability of the initial state, p(X1), completely determines
the probability of a given observation for a fixed P,

p(X1, . . . , XN |P ) = p(C|P )p(X1). (1)

As a result of Markovianity the probability of observing tran-
sition counts cij given a set of transition probabilities pij is
given by the multinomial distribution,

p(C|P ) ∝
n∏

i,j=1

p
cij

ij . (2)

However, we need the probability of a certain transition ma-
trix given an observation of transition counts, p(P|C). Bayes’
theorem can be used to relate p(C|P) to p(P|C) via

p(P |C) ∝ p(C|P )p(P ).

Using a suitable conjugate prior with prior counts bij, as out-
lined in Ref. 31, we find that this probability is given by a
product of Dirichlet distributions,

p(P |C) ∝
n∏

i,j=1

p
cij +bij

ij . (3)

Here the following normalization condition for row-
stochasticity of P is assumed to hold,

n∑
k=1

pik = 1 i = 1, . . . , n. (4)

The structure of (3) makes it possible to generate indepen-
dent Dirichlet distributed rows if no additional constraints on
P are imposed.50, 51, 57, 58 If one desires to restrict the space of
all admissible transition matrices to those obeying a detailed
balance condition,

πipij = πjpji, (5)

the additional interdependence between rows prohibits to gen-
erate samples from (3) by direct sampling of individual rows.
In Ref. 54 a Metropolis-Hastings Monte Carlo chain method

is developed to generate random transition matrices from (3)
under the detailed balance constraint. In the following we will
only consider the situation in which the stationary probabili-
ties have been already computed using a different simulation
algorithm. Note that fixing π1, . . . , πn and requiring detailed
balance reduces the number of independent variables pij from
n(n − 1) to n(n−1)

2 . This is a 50% reduction in dimension and
we expect that imposing this extra symmetry will have a large
effect when comparing quantities estimated with and without
these constraints. In the following we will use the normal-
ization condition (4) to determine the diagonal of P from the
off-diagonal elements,

pii = 1 −
∑
k �=i

pik i = 1, . . . , n

and the detailed balance condition (5) in combination with the
fixed stationary vector to determine the lower triangular part
of P from the upper triangular one,

pji = πi

πj

pij 1 ≤ i < j ≤ n.

This approach for incorporating a priori knowledge
about stationary probabilities has a straightforward general-
ization to situations in which the stationary probabilities are
not precisely known. If one has obtained a probability model
for the stationary probabilities:

p(π |E) (6)

from an enhanced sampling method E one can incorporate
this prior knowledge of π into a probability model for P. The
probability model for P given the evidence C and E is given
by

p(P |C,E) =
∫

dπ p(P |C,π )p(π |E). (7)

P ∼ p(P|C, E) can be sampled by iteratively generating sam-
ples of π from p(π |E) and of P from p(P|C, π ).

III. CONDITIONAL PROBABILITIES

The Gibbs sampling strategy facilitates sampling of a
joint distribution by generating random variates from the con-
ditionals. In the following we will show that for a fixed
stationary vector (π1, . . . , πn) all the conditionals of p(P|C)
have a simple analytical form. Furthermore, we will outline a
method to generate random variates efficiently from all condi-
tionals for all possible configurations of P and π . For the sake
of brevity of notation we will often suppress the fixed obser-
vation C when stating relations for the conditionals. There are
only four factors in the joint probability (3) with an explicit
dependence on the transition matrix element pij. The element
pii is linked to pij by constraint (4), pji is related to pij by (5),
and finally pjj is dependent on pij by a combination of (4) and
(5). For this reason the conditional probability for pij is given
conditioned on the following set of transition matrix elements:

{p11, . . . , pnn}/{pii, pij , pji, pjj }.
In a slight abuse of notation we indicate this conditioning
on the above set writing the conditional density for pij as

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.152.56 On: Wed, 04 Nov 2015 13:12:01



164113-4 B. Trendelkamp-Schroer and F. Noé J. Chem. Phys. 138, 164113 (2013)

p(pij|pk�=i, j, l�=i, j). It is given by

p(pij |pk �=i,j,l �=i,j ) ∝ p
cij

ij p
cji

j i p
cii

ii p
cjj

jj .

Plugging in the constraints (4) and (5) we get

p(pij |pk �=i,j,l �=i,j ) ∝ p
cij +cji

ij

×
⎛
⎝

⎛
⎝1 −

∑
k �=i,j

pik

⎞
⎠ − pij

⎞
⎠

cii

×
⎛
⎝

⎛
⎝1 −

∑
k �=j,i

pjk

⎞
⎠ − πi

πj

pij

⎞
⎠

cjj

explicitly showing the univariate dependence on pij. Now we
define

�ij =
⎛
⎝1 −

∑
k �=i,j

pik

⎞
⎠ , (8)

�ij = πj

πi

⎛
⎝1 −

∑
k �=j,i

pjk

⎞
⎠ . (9)

Using these we can rewrite the conditional density as

p(pij |pk �=i,j,l �=i.j ) ∝ p
cij +cji

ij (�ij − pij )cii (�ij − pij )cjj .

(10)
We assume that �ij ≤ �ij. Then we can define

x = pij

�ij

and define the following parameters:

a = cij + cji, (11)

b = cii , (12)

c = cjj , (13)

d = �ij

�ij

. (14)

In the case �ij > �ij we switch the definition of b, c, define
d = �ij/�ij and x = pij/�ij. It can be seen that in both cases a,
b, c ≥ 0, d ≥ 1, and 0 ≤ x ≤ 1. After a little algebra we get

p(x|a, b, c, d) ∝ xa(1 − x)b(d − x)c, (15)

with 0 ≤ x ≤ 1. This means that if we can generate random
variates from p(x|a, b, c, d) efficiently for all admissible pa-
rameters, we can efficiently sample all conditional densities
arising during a Gibbs sampling procedure. The dependence
of the conditionals for pij on both cij and cji clearly reflects
the additional symmetry imposed by the detailed balance
condition.

A. Log-concave densities

We can write the density p(x|a, b, c, d) in the following
way:

p(x|a, b, c, d) = eq(x|a,b,c,d),

with

q(x|a, b, c, d) = a log(x) + b log(1 − x) + c log(d − x).

The second derivative of q(x|a, b, c, d) is given by

q ′′(x|a, b, c, d) = − a

x2
− b

(1 − x)2
− c

(d − x)2
.

It is easy to see that

q ′′(x|a, b, c, d) ≤ 0,

for all 0 ≤ x ≤ 1 and all parameters a, b, c ≥ 0 and d ≥ 1.
This is a sufficient condition for q(x|a, b, c, d) to be a con-
cave function and therefore all conditionals p(x|a, b, c, d) fall
into the category of log-concave densities. There exist effi-
cient approaches for the generation of random variates from
a log-concave density given explicit knowledge of the mode
point and the ability to evaluate the density p(x) and the first
derivative of its logarithm q(x) = log p(x). For an overview
of methods to sample from log-concave densities see Ref. 58.
The crucial feature employed by all these methods is that any
concave function q : � → R is bounded from above by all its
tangents, so that for all x0 for which q′(x0) exists, the follow-
ing holds:

q(x) ≤ q(x0) + q ′(x0)(x − x0) ∀x ∈ �.

Since the exponential function is a monotone function we
have

f (x) = eq(x) ≤ eq(x0)+q ′(x0)(x−x0).

The global maximum or mode point of p(x|a, b, c, d) is at-
tained at xm with

q ′(xm|a, b, c, d) = 0

subject to the constraint 0 ≤ xm ≤ 1. We have

q ′(x|a, b, c, d) = x−1(1 − x)−1(d − x)−1

{a(1 − x)(d − x) − bx(d − x) − cx(1 − x)} .

It is obvious that it suffices to find the zeros of

a(1 − x)(d − x) − bx(d − x) − cx(1 − x).

This expression is at most quadratic in x for all admissible
parameters. Therefore, extremal points of q(x|a, b, c, d) are
given by

x1,2 = 1

2(a + b + c)
((a + b)d + (a + c) ± √

r),

with

r = [(a + b)d + (a + c)]2 − 4(a + b + c)ad.

It is apparent that p(x|a, b, c, d) has zeros at x0 = 0,
x0 = 1, and x0 = d. Recall that d ≥ 1. This means that there
is one extremal point in [0, 1] and one extremal point in
[1, d]. Therefore, we conclude that xm corresponds to the
smaller one of the two extremal points,

xm = 1

2(a + b + c)
((a + b)d + (a + c) − √

r). (16)

We note that the mode point need not lie in the interior of the
unit interval so that xm = 0 and xm = 1 are possible values.
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FIG. 1. The conditional density p(x|a, b, c, d) for a = 8.0, b = 2.0,
c = 4.0, and d = 30.0 (solid line) and the corresponding enveloping function
g(x) (dashed line). The density was scaled to the mode point value p(xm|a, b,
c, d) to fit it into the range [0, 1].

B. Optimal piecewise approximation

We will use a piecewise enveloping function g(x|a, b,
c, d) bounding p(x|a, b, c, d) consisting of a uniform density
around the mode point and exponential tails elsewhere. For
log concave densities f(x) it is possible to use the following
general approach to find an enveloping function g(x) for f(x).
Let again q(x) = log f(x). Consider the following piecewise
defined function h(x):

h(x) =

⎧⎪⎨
⎪⎩

q(xl) + q ′(xl)(x − xl) −∞ < x < xl

q(xm) xl ≤ x ≤ xu

q(xu) + q ′(xu)(x − xu) xu ≤ x < ∞.

Here xl and xu denote the lower and the upper bound for a
region around xm in which f(x) will be bounded by a uniform
density f (xm)χ[xl ,xu](x). As a consequence of concavity the
function h(x) is a valid dominating function for q(x). Thus
g(x) = eh(x) is a valid enveloping function for f(x). Figure 1
shows p(x) and the enveloping density g(x). The optimal
choice for xl and xu is the one that minimizes the area between
g(x) and f(x) leading to the lowest possible rejection rate. One
can show58 that an xl ≤ xm and xu ≥ xm is optimal if

f (x∗
l ) = f (xm)

e
, f (x∗

u) = f (xm)

e
.

Here e denotes the Euler number. If f−1 is explicitly known
finding the optimal solution is straightforward. It is apparent
that for unimodal (continuous) densities f the inverse f−1 is
always unique on x ≤ xm and on x ≥ xm. Unfortunately we
do not have an explicit expression for p−1(x|a, b, c, d). It is
however always possible to choose suboptimal points xl and
xu at the cost of a larger rejection rate. In the case that xm lies
on the boundary of the domain of f(x) the bounding function
will be a single exponential function. In the case that xl or xu

lie outside the domain of definition one restricts h(x) by trun-
cating it at the boundary points so that only one exponential
tail or only the constant part will survive.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

p(
x
)

xlx∗
l xu x∗

u

e−1

e−0.5

FIG. 2. The picture shows the location of the optimal points x∗
l and x∗

u for
p(x) (solid line) and the points xl and xu obtained from the Gaussian approxi-
mation (dashed line). The Gaussian approximation touches the density at the
mode point.

C. Suboptimal piecewise approximation

Unfortunately we do not have the inverse to the condi-
tional density (15). We will use additional information about
p(x|a, b, c, d) to make a good although suboptimal choice for
xl and xu. In the following let 0 < xm < 1. A second order
Taylor expansion of q(x|a, b, c, d) around the mode point
yields a Gaussian approximation of the conditional density,

p(x) ≈ exp

{
q(xm) + q ′′(xm)

2
(x − xm)2

}
.

The standard deviation is given by σ =
√

1
−q ′′(xm) . We simply

set

xl = xm − σ, xu = xm + σ.

A comparison between the optimal points and the ones ob-
tained from the Gaussian approximation to p(x) is shown in
Figure 2.

D. Rejection sampling using the envelope

It is straightforward to generate random variates from the
individual pieces of the enveloping function. There are fast
and reliable implementations for the generation of uniform
as well as for exponential random variates and we can use
rejection to sample from pieces of p(x) individually. We can
decompose p(x) as follows:

p(x) = p1p(x)χ[0,xl ](x) + p2p(x)χ[xl ,xu](x)

+ p3p(x)χ[xu,1](x),

with pi denoting the weights of the individual pieces. We do
not know the discrete probabilities pi a priori but there is a
simple and efficient algorithm circumventing the need for pi

altogether. The algorithm does only require the weights wi

of the individual pieces of g(x). Due to the simple form of
g(x) obtaining analytic expressions for wi is straightforward.
The following Algorithm I is a variant of the modified com-
position method that can be found in Ref. 58 (p. 69). In the
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ALGORITHM I. Sample p(x|a, b, c, d).

Input: a, b, c, d
Output: x

Compute xm using (16)

σ =
√

1
−q ′′(xm)

xl = xm − σ

xu = xm + σ

Compute w1, w2, and w3 using (17), (18), (19), (20)
repeat

Z ∼ χ [0, 1](x)
U ∼ χ [0, 1](x)
if Z < w1 then

repeat
y ∼ e−q ′(xl )y

x = xl − y

until x ≥ 0
else if Z < w1 + w2 then

y ∼ χ [0, 1](x)
x = xl + (xu − xl)y

else
repeat

y ∼ eq ′(xu)y

x = xl + y

until x ≤ 1
end

until Ug(x) < p(x)

following let 0 < xl < xu < 1. The treatment of special cases
is straightforward but requires additional branches in the al-
gorithm complicating notation. The discrete probabilities of
the individual dominating pieces wi are given by

wi = ri∑3
k=1 ri

, (17)

with

r1 =
∫ xl

−∞
dx p(xl)e

q ′(xl )(x−xl ) = p(xl)

q ′(xl)
, (18)

r2 =
∫ xu

xl

dx p(xm) = p(xm)(xl − xu), (19)

r3 =
∫ ∞

xu

dx p(xl)e
q ′(xl )(x−xl ) = p(xu)

−q ′(xu)
. (20)

In order to increase numerical stability for cases in which
a, b, c, and d have large values (15) is usually scaled to the
mode point value. Additionally the logarithm of the final ac-
ceptance condition in Algorithm I,

log(U ) + h(x) ≤ q(x),

can be tested instead of the condition Ug(x) < p(x). The case
d � 1 can, for example, occur in situations in which the prob-
abilities for states differ by orders of magnitude, π i � π j,
since d ∝ π j/π i.

ALGORITHM II. Modified rejection algorithm.

Input: a, b, c, d
Output: x

repeat
x ∼ g(x|a, b)
U ∼ χ [0, 1](x)

until U < ψ(x|c, d)

E. Modified rejection sampling for large d values

In the case d � 1 we can use an alternative strategy to
generate samples according to (15). We can rewrite

p(x|a, b, c, d) ∝ g(x|a, b)ψ(x|c, d)

with

g(x|a, b) = 	(a + b)

	(a)	(b)
xa(1 − x)b

and

ψ(x|c, d) =
(

d − x

d

)c

.

The density g(x|a, b) is the usual beta density which can be
efficiently sampled and ψ(x|c, d) is a [0, 1] valued function.
The modified rejection method,58 Algorithm II, can be used
to generate samples from p(x|a, b, c, d). The algorithm is effi-
cient for cases in which ψ(x|c, d) ≈ 1 for all x ∈ [0, 1]. In the
case d � 1 we obtain

ψ(x|c, d) ≈ 1 − cx

d

using a Taylor expansion in x/d. Since x ∈ [0, 1] the algorithm
is efficient for c/d � 1. It is straightforward to see that the
efficiency of Algorithm II increases with growing d.

IV. MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood estimate P* is the optimal point
of the likelihood function p(C|P). In other words the given
observation C is most likely to be generated by the optimal
model P*. The multinomial form of the likelihood and the
linear nature of the constraints makes it possible to reformu-
late the problem of finding the maximum likelihood estimate
as a convex optimization problem. Thus the global optimum
P* can be efficiently found. For a thorough introduction and
exhaustive overview see Ref. 59.

We note that log is a strictly monotone function so that
finding the maximal point of p(C|P) is equivalent to finding
the maximal point of the log-likelihood function,

l(C|P ) = log p(C|P ).

Finding the reversible transition matrix with given station-
ary distribution π maximizing l(C|P) can be stated as the
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following optimization problem:

minimize −
n∑

i,j=1

cij log pij ,

subject to −pij ≤ 0 1 ≤ i, j ≤ n,

n∑
k=1

pik = 1 1 ≤ i ≤ n,

πipij − πjpji = 0 1 ≤ i < j ≤ n.

This is a constrained optimization problem in n2 variables.
A reduction in the number of independent variables can be
achieved by eliminating constraints and explicitly incorporat-
ing them into the objective function and the remaining con-
straints. There exist a number of numerical libraries for the
solution of convex optimization problems. We have used the
freely available python cvxopt module.60 The numerical so-
lution of a convex optimization problem is usually facilitated
by iteratively updating the suboptimal point by solving a sys-
tem of linear equations containing the first and second or-
der derivatives of the objective function and all non-linear
constraints as well as the matrices specifying the linear con-
straints. In order to start the iterative scheme one needs a valid
initial point to start the iteration. In the following we will out-
line how we can compute a reversible transition matrix P with
fixed stationary distribution π from any given possibly non-
reversible transition matrix Q. Our method is similar to an ap-
proach outlined in Ref. 61. The guiding idea is the mechanism
underlying the Metropolis-Hastings algorithm transforming
an arbitrary transition matrix into one that is reversible with
respect to a given stationary distribution. Denote by aij the
following weights:

aij = min

{
1,

πjqji

πiqij

}
. (21)

These are precisely the weights in the Metropolis-Hastings
algorithm. Define a new transition matrix P(0) by

p
(0)
ij =

{
aij qij i �= j

1 − ∑
k �=i aikqik i = j.

(22)

Observe that the diagonal elements pii will always be greater
after such a transformation pii ≥ qii for all i = 1, . . . , n. We
will use the transformation outlined above in order to generate
a valid starting point for the likelihood maximization scheme.
Since Q is arbitrary we choose it to be the non-reversible max-
imum likelihood estimator,

qij = cij∑n
k=1 cik

.

We generate P(0) by enforcing the reversibility condition with
respect to π using (21) and (22).

As an alternative, the likelihood maximization can be
performed by iteratively maximizing the conditional proba-
bilities of pij for i < j. This is either done by the reversible
transition matrix estimator described in Ref. 31, or by the
following iterative algorithm, Algorithm III. The former al-
gorithm is implemented in EMMA56 by the mm_estimate
command.

ALGORITHM III. Iterative maximum likelihood estimation with fixed sta-
tionary distribution.

Input: π , C
Output: P*
P = P(0)(π , C)
S = P
while δ > ε do

for i ∈ {1, . . . , n} do
for j ∈ {1, . . . , n} do

if i < j then
Compute parameters �ij, �ij, a, b, c, d.
Mode point xm = xm(a, b, c, d)
pij = xm · min (�ij, �ij)
pii = �ij − pij

pji = πi
πj

pij

pjj = πi
πj

�ij − pji

end
end

end
δ = |l(C|P) − l(C|S)|
S = P

end
P* = P

V. A GIBBS SAMPLER FOR TRANSITION MATRICES
WITH FIXED STATIONARY DISTRIBUTION

The Gibbs sampling approach as first presented in
Ref. 62 achieves the following. Let p(x1, . . . , xn) be a given
joint probability distribution and denote by pi(xi) the marginal
distribution of the ith variable, pi(xi) = p(xi|xj�=i). It can be
shown that under certain conditions (Lemma 10.11 in Ref. 63)
the ability to generate random variates from all conditionals
pi(xi) is sufficient to generate samples from the joint distri-
bution p(x1, . . . , xn). The algorithm can be stated as follows.
Denote by (x(k)

1 , . . . , x(k)
n ) the kth random vector generated by

the algorithm. Then a new sample is generated by “sweeping”
through the vector updating all coordinates from the respec-
tive conditional densities. In other words, for i in 1, . . . , n,

x
(k+1)
i ∼ p

(
xi

∣∣x(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i+1, . . . , x(k)

n

)
.

There exist several variants of the Gibbs sampling algorithm,
the “random scan” version which picks i from {1, . . . , n} at
random and returns a new sample after n of such updates in-
stead of sweeping through all coordinates in succession is es-
pecially popular.

Recall that the conditional distribution of pij is given by
(10) with parameters �ij and �ij explicitly given by (8) and
(9). Having obtained an explicit expression for p(pij|pk�= i,j,l�=i,j)
for all i < j we can proceed to construct a Gibbs sampling al-
gorithm to generate random variates P from the joint distribu-
tion. In order to start the Markov chain we need a valid initial
transition matrix P(0) obeying detailed balance with respect
to the given stationary distribution (π i)1≤i≤n. The matrix P(0)

should also be irreducible so that choosing any irreducible
transition matrix qij and enforcing detailed balance with re-
spect to π according to (22) will result in a valid initial tran-
sition matrix possessing the desired properties. However, we
recommend to use the maximum likelihood estimate obtained
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ALGORITHM IV. Gibbs sampling of P with fixed stationary
distribution π .

Input: π , C, P(k−1)

Output: P(k)

repeat
i ∼ {1, . . . , n}
j ∼ {1, . . . , n}

until i < j

�
(k)
ij = p

(k−1)
ij + p

(k−1)
ii

�
(k)
ij = πj

πi

(
p

(k−1)
jj + p

(k−1)
ji

)
if �

(k−1)
ij ≤ �

(k−1)
ij then

d = �
(k−1)
ij

�
(k−1)
ij

b = Cii

c = Cjj

else

d = �
(k−1)
ij

�
(k−1)
ij

b = Cjj

c = Cii

end

Sample x ∼ xa(1 − x)b(d − x)c using algorithm I

p
(k)
ij = x · min

(
�

(k−1)
ij , �

(k−1)
ij

)
p

(k)
ii = �

(k−1)
ij − p

(k)
ij

p
(k)
ji = πi

πj
p

(k)
ij

p
(k)
jj = πi

πj
�

(k−1)
ij − p

(k)
ji

above as a starting point for the Gibbs chain to immediately
draw transition matrices from regions of high probabilities.
The computation of parameters during the Gibbs sampling
procedure can be simplified by noting that

�
(k)
ij = p

(k−1)
ij + p

(k−1)
ii ,

�
(k)
ij = πj

πi

(
p

(k−1)
jj + p

(k−1)
ji

)
,

where k denotes the step in the Gibbs sampling chain. In other
words coupling between elements is mediated only by diag-
onal elements pii. This gives rise to Algorithm IV. The usual
procedure returns only after l such elementary steps have been
taken resulting in a sequence P(0), P(l), . . . , P(Nl) of transition
matrices. Here l denotes the number of independent variables,
l = n(n − 1)/2.

In the case that π has some uncertainty specified by the
probability model (6), the generation of a compatible ensem-
ble of transition matrices can be achieved using (7) given that
samples of π can be generated according to p(π |E). The fol-
lowing Algorithm V generates P ∼ p(P|C, E). The number k
is usually taken as the minimal number of runs to decorrelate
from the starting point P(0).

A. Enforcing sparsity—A prior
for metastable dynamics

The equilibrium dynamics of proteins does often exhibit
the feature of metastability. Thus any transition matrix charac-
terizing an approximation via a Markov jump process on con-

ALGORITHM V. Gibbs sampling of P with uncertain stationary
distribution.

Input: C, E, k
Output: P

π ∼ p(π |E)
Compute P(0) according to (22) or via algorithm III
for i ∈ {1, . . . , k} do

Generate P(i) via algorithm IV using π , C, P(i−1)

end
P = P(k)

formation space should also exhibit traits of metastability. As
discussed in Ref. 64 metastable Markov processes on discrete
state spaces can be understood in terms of nearly uncoupled
Markov chains with small transition probabilities between
blocks defining the dynamics within a single metastable sub-
set. For finite observations of the metastable process the
small probabilities for transitions between metastable sets
and the zero probabilities of forbidden transitions might be-
come indistinguishable in an ensemble of transition matrix
generated by a sampling approach with no prior informa-
tion. If the uncertainties of small but non-zero transition
probabilities are of the same order than those that corre-
spond to forbidden transitions it might not be possible to re-
cover the desired metastable properties from the generated
ensemble. In physical systems there are of course no forbid-
den transitions since all transition probabilities are strictly
positive. However, many of these might be still orders of
magnitude smaller than the transition probabilities between
metastable regions. In practice we will not observe any of
such transitions in a finite realization of our process, not
even for a typical realization long enough to achieve suf-
ficient sampling of metastable transitions. In this case we
can treat them, in a very good approximation, as forbidden
transitions.

We will show how one can enforce the generation of an
ensemble of transition matrices compatible with the sparsity
structure of the given observations. If one assumes detailed
balance with respect to π observed transitions cij as well
as observed transitions cji indicate nonzero probabilities pij,
i < j. Therefore, we conclude that whenever cij + cji > 0 the
probability of pij > 0 is positive, P (pij > 0) > 0. To enforce
sampling of metastable transition matrices we require that pij

= 0 if cij + cji = 0, i < j, for all P in the sample. In other
words the sparsity structure of C + CT is enforced for all P.
This sparsity prior is equivalent to using a prior count of −1
on all (i, j) with cij + cji = 0 in (3) (see supplementary in-
formation of Ref. 1). The sparse prior is applied by restrict-
ing the sampling algorithm to those elements pij for which cij

+ cji > 0. It is apparent that the

qij = cij + cji∑
k(cik + cki)

possesses the desired sparse structure. Furthermore, gener-
ating P(0) according to (22) does not change the sparsity
structure of the off-diagonal elements of Q. Starting from a
transition matrix with the desired sparse structure it is
straightforward to restrict the Gibbs sampling algorithm by
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ALGORITHM VI. Gibbs sampling of P with fixed stationary distribution
π—Sparse version.

Input: π , C, P(k−1), θ

Output: P(k)

Draw (i, j) uniformly from θ

Proceed as in algorithm IV

updating only elements for which i < j and cij + cji > 0. De-
note by

θ = {(i, j ) ∈ N2|1 ≤ i < j ≤ n, cij + cji > 0}.
In Algorithm VI we outline a method to generate a sample
of reversible transition matrices with fixed stationary distri-
bution obeying the sparse structure given by θ .

VI. RESULTS

In the following we will show that the above outlined
Gibbs sampling converges much faster than the Metropolis-
Hastings approach developed in Ref. 54. Please recall that
the general Metropolis-Hastings approach generates random
variates from the density p(x) by choosing proposals y con-
ditioned on the current state of the chain x from a proposal
density q(x, y) and accepts proposed samples with the follow-
ing acceptance probability,

a(x, y) = min

{
1,

p(y)q(y, x)

p(x)q(x, y)

}
.

The crucial difference between Gibbs sampling and
Metropolis-Hastings sampling is that the Metropolis chain re-
mains in the current state as long as the proposed value is
rejected while the Gibbs sampling approach generates a new
sample at each step. This possibility to remain in the cur-
rent state usually leads to longer correlation times for the
Metropolis chain than for the Gibbs chain. Thus one needs
to run longer Metropolis chains than Gibbs chains to achieve
an equal degree of convergence. On the other hand one needs
to be able to generate random variates from all conditionals
efficiently while the Metropolis chain can be advanced using
a possibly very simple proposal density q(x, y). In the fol-
lowing we will compare our current sampling approach with
the one developed in Ref. 54 and demonstrate improved con-
vergence and more-rapidly decaying autocorrelation. We start
with a simple model using the following count matrix:

C =

⎛
⎜⎝

100 5 0

20 4 20

0 8 75

⎞
⎟⎠ (23)

and stationary distribution,

π = (0.5, 0.01, 0.49) (24)

to assess the convergence properties of the two approaches.

A. Conditional distributions

We have generated a sample of N = 106 random variates
from the conditional density, p(x|a, b, c, d) (15), for various

choices of parameters a, b, c, d to demonstrate the ability of
our new method to correctly generate random variates from
all possible conditional densities. In Figure 3 we compare the
shape of each histogram to the graph of the exact density func-
tion for the same parameter values. The figures clearly indi-
cate that all densities have been correctly sampled.

B. Convergence of mean values and variances

In order to assess the quality of a Monte Carlo sam-
pling procedure one usually computes the standard error of
the mean of an observable O estimated from a finite sam-
ple generated by evolving the chain for a finite number of
steps. As observable we choose the value of individual ma-
trix elements, O = pij and the value of the second largest
implied time scale, O = t2. We have generated a maximum
likelihood reversible transition matrix of the count matrix
(23) with stationary distribution (24) using the algorithm in
Ref. 56. Then nensemble = 100 independent Gibbs samplers
using Algorithm IV were used, taking N steps in the range
102. . . 105, estimating E(pij ) and E(t2) for each (nensemble, N).
Then we have estimated the standard deviation over the sam-
ple for each (fixed) N. See Figure 4(a) for a comparison of the
convergence of E(pij ) between the two sampling approaches.
The slowest relaxation timescale t2, Figure 4(b), is an exam-
ple for a global observable with a functional dependence on
all elements pij so that the expectation value E(t2) is a suit-
able measure to access the convergence of general observ-
ables. A comparison of the convergence behavior is shown in
Figure 4(b). We can also choose to observe the variance of
individual matrix elements as well as the variance of the sec-
ond largest implied timescale. The setup is identical to the
one outlined for mean values. The figure also shows the con-
vergence of the variance V (x) for a single matrix element,
Figure 4(c), as well as for the implied timescale, Figure 4(d).
The figures clearly indicate the improved convergence prop-
erties of the presented approach over the previous MCMC
sampler in Ref. 54, requiring two orders of magnitude less
sampling steps to achieve a similar error level.

C. Autocorrelation functions

As another measure of the improved convergence prop-
erties we compare the mixing times of the MCMC chain and
the Gibbs chain. We have generated a sample of 105 transition
matrices for the above count matrix, (23), and stationary dis-
tribution, (24). Each sample was generated by advancing the
chain using a single Gibbs or Metropolis step. Let Xk be the
value of the observable for the kth sample. We have estimated
the normalized autocorrelation function,

ρX(n) = E[(Xk − μ)(Xk+n − μ)]

σ 2

using the following estimator for the sample autocorrelation:

ρX(n) = 1

σ 2(N − l)

N−1−l∑
k=0

(Xk − μ)(Xk+n − μ),

with 0 ≤ n ≤ l. The autocorrelation function for p13

in Figure 5(a) clearly indicates the faster decay of
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FIG. 3. Conditional density p(x) (solid line) for different parameters a, b, c, and d. The histograms show a sample of N = 106 random variates generated using
the method outlined above. First row c = 4, d = 10: (a) a = 5, b = 0, (b) a = 5, b = 2, and (c) a = 0, b = 2. Second row c = 40, d = 100: (d) a = 100, b
= 5, (e) a = 100, b = 100, and (f) a = 5, b = 100. Third row: (g) a = 0, b = 0, c = 4, d = 10, (h) a = 0.5, b = 0.2, c = 40, d = 100, and (i) a = 0, b = 0,
c = 4 × 103, d = 104.

autocorrelations for the Gibbs sampler. The autocorrelation
function for the second largest implied time scale demon-
strates a significant improvement over the previous approach,
see Figure 5(b). The number of steps required in order to gen-
erate decorrelated samples, ndecorr, has been estimated by as-
suming an exponential decay for the autocorrelation function,

ρ(n) = e
− n

ndecorr .

The area under the graph of the autocorrelation function was
computed using the trapezoidal rule and used as an estimate
for ndecorr. Values for ndecorr as well as for the corresponding
decorrelation time, tdecorr, for observables p13 and t2 can be
found in Table I. ndecorr is two orders of magnitude smaller for
the Gibbs sampler than for the Metropolis approach. Due to
the comparable speed of elementary sampling steps for both

algorithms the improved decorrelation constant, ndecorr, leads
to a similar improvement in decorrelation time.

D. Application to simulation data

In order to demonstrate the performance of the transi-
tion matrix sampling method we have applied the presented
transition matrix Gibbs sampling algorithm to simulation data
for the synthetic peptide MR121-GSGS-W. Trajectories were
obtained by standard equilibrium dynamics simulations of a
constant volume ensemble at 293 K in explicit water with the
Berendson thermostat using the Gromacs65 simulation soft-
ware. Each of the two trajectories used has a total length of
4 μs with trajectory frames separated by a time step of 10 ps.
A detailed description of the simulation setup can be found
in the supplementary information of Ref. 45. The trajectories
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FIG. 4. Results obtained for the model system with count matrix (23) and stationary distribution (24). Standard deviation for estimated mean and variance of
observables is plotted against the number of elementary sampling steps N. (a) Mean transition matrix element E(p13), (b) mean of the second largest implied
time scale E(t2), (c) transition matrix element variance V (p13), and (d) variance of the second largest implied time scale V (t2). The Gibbs sampler introduced
here (solid line) convergences faster than the Metropolis chain from Ref. 54 (dashed line) by almost two orders of magnitude. For the mean second largest time
scale E(t2), (b), the achieved speedup is more than one order of magnitude.
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FIG. 5. Autocorrelation functions for the model system with count matrix (23) and stationary distribution (24). (a) Autocorrelation function for the transition
matrix element p13 and (b) autocorrelation function for the second largest implied time scale t2. The number of steps to take until samples are decorrelated
ndecorr is two orders of magnitude smaller for the Gibbs sampling method (solid line), ndecorr = 3 for p13 as well as for t2, compared to the Metropolis sampling
method (dashed line), ndecorr = 123 for p13 and ndecorr = 135 for t2.
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TABLE I. Decorrelation times for estimated mean and variances of observ-
ables. The results were generated for the model system with count matrix
(23) and stationary distribution (24) (p13 and t2) and for the MR121-GSGS-
W peptide (t2 only).

Gibbs sampler Metropolis sampler

ndecorr tdecorr ndecorr tdecorr

3 × 3 count matrix from (23)
p13 3 2.7 μs 123 98.4 μs
t2 3 2.7 μs 135 108 μs

MR121-GSGS-W peptide
t2 4600 4.14 ms 33 000 26.4 ms

were clustered using regular spatial clustering of root-mean-
square deviation (RMSD) distances using EMMA.56 A spa-
tial cutoff of 3.5 nm resulted in a clustering with 107 distinct
microstates. In order to obtain an estimate for the stationary
probabilities of each microstate a Markov model with a lag
time of 10 ns was generated using the reversible transition
matrix estimator presented in Ref. 31. The stationary distribu-
tion was obtained from the estimated transition matrix as the
left eigenvector with eigenvalue 1. A corresponding matrix
containing transition counts between individual microstates
was obtained by counting transitions at the same lag time.
The sparse prior for metastable dynamics presented above
was used to generate an ensemble of transition matrices us-
ing both the Metropolis and the Gibbs sampling procedure.
We have started nensemble = 100 independent chains with N
steps in the range 105. . . 107 and estimated E(t2) and V (t2)
for each (nensemble, N). The standard deviation was estimated
over the sample for each (fixed) N. In order to speed up the
computation we have estimated t2 from a spectral decomposi-
tion only after l elementary sampling steps. We have chosen l
as the number of nonzero independent transition probabilities
pij. Figure 6 clearly indicates the improved convergence prop-
erties of the presented approach. Here, the Gibbs procedure
needs one order of magnitude less sampling steps to reach a
similar error level. A comparison of the autocorrelation func-
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FIG. 7. Autocorrelation function for the MR121-GSGS-W peptide count
matrix. The number of steps to take until samples are decorrelated ndecorr

is an order of magnitude smaller for the Gibbs sampling method (solid line),
ndecorr = 4600, compared to the Metropolis sampling method (dashed line),
ndecorr = 33 000.

tions for t2, Figure 7, shows an order of magnitude smaller
decorrelation constant ndecorr for the Gibbs sampler compared
to the Metropolis sampler. Table I shows ndecorr with the cor-
responding decorrelation time tdecorr. Due to the comparable
speed of elementary sampling steps for both algorithms the
improved decorrelation constant, ndecorr, leads to a one order
of magnitude lower decorrelation time, tdecorr, for the Gibbs
sampling algorithm.

E. Computational efficiency

For large entries in the count matrix cij � 1 the affected
conditionals will be sharply peaked so that the uniform pro-
posal densities used in Ref. 54 will have very low acceptance
rates. This results in slow mixing chains and large autocorre-
lation times for the Metropolis algorithm so that much longer
chains have to be run in order to achieve the same level of
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FIG. 6. Results obtained for the synthetic peptide MR121-GSGS-W. Standard deviation of Figure 6(a) the mean implied time scale E(t2) and Figure 6(b) the
implied time scale variance V (t2). The Gibbs sampler (solid line) shows a faster convergence than the Metropolis sampler (dashed line) for mean and variance
of the second largest implied timescale t2.
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convergence. Due to the fact that Algorithm IV only uses stan-
dard distributions to envelope the conditionals, generating a
random variate by rejection sampling from the conditional
density is efficient enough to allow the generation of long
chains. The Gibbs sampling algorithm, Algorithm IV, was
implemented using the colt library.66 The algorithm performs
108 elementary sampling steps in 89.1 s on a 2 GHz Intel pro-
cessor. Performing the same number of elementary Metropo-
lis steps takes 83.4 s, with a 27% overall acceptance rate. The
acceptance rate for the Metropolis step is also highly depen-
dent on the specific element. The number of steps required in
order to generate decorrelated samples ndecorr as well as the
wall-clock decorrelation time tdecorr is shown in Table I as an
indicator of computational efficiency. The decorrelation time
is calculated as ndecorr · tsample with tsample = 0.9 μs for the
Gibbs sampling algorithm tsample = 0.8 μs for the Metropolis
algorithm.

VII. COMPARISON WITH NONREVERSIBLE
AND REVERSIBLE ESTIMATION

We have used the following 3 × 3 transition matrix:

T =

⎛
⎜⎝

0.99 0.01 0.0

0.45 0.1 0.45

0.0 0.01 0.09

⎞
⎟⎠ ,

to generate a transition counts C by evolving a Markov chain
for N = 5000 steps starting from microstate i = 0. To simu-
late the effect of having used an efficient enhanced sampling
algorithm, the exact stationary distribution,

μ = (0.4945, 0.011, 0.4945)

and the observed transition counts were used to generate
a sample of 100 000 random transition matrices using the
Gibbs sampling algorithm. For each of the randomly gener-
ated transition matrix the second largest eigenvalue λ2 and
the corresponding implied time scale t2 were computed. For
comparison, the observed transition counts were used in a
similar manner to generate a sample of implied time scales
without prior knowledge of the stationary distribution with
and without explicitly enforcing a detailed balance condition.
It is clearly visible in Figure 8 that the estimation procedure

including knowledge about stationary probabilities gives a
more accurate and a much sharper estimate of this quantity.

VIII. DISCUSSION AND CONCLUSION

We have presented a Gibbs sampling algorithm for the
generation of transition matrices fulfilling the detailed bal-
ance constraint with respect to a given stationary distribution.
The presented algorithm shows a clear improvement in con-
vergence speed and autocorrelation times over the algorithm
presented in Ref. 54. We believe that the presented algorithm
will be a useful tool for Monte Carlo sampling of transition
probabilities when a priori knowledge about stationary prob-
abilities is available in addition to observed transition counts.
As already pointed out in Ref. 54 enforcing the detailed bal-
ance condition can lead to an immense reduction in variance
of certain off-diagonal elements leading to sharper estimates
for kinetically relevant observables. With a priori estimates
of stationary distributions available from extended ensemble
simulations and an increased interest in estimating dynamical
quantities of molecular systems from Markov model based
approaches the outlined algorithm will hopefully become a
useful statistical tool for the analysis of metastable systems.

There are several directions for future research. An im-
proved scheme for the generation of random variates from
the conditional density could further speed up the algorithm
allowing the generation of transition matrices for processes
with larger state spaces. Larger acceptance rates could be al-
ready achieved by finding better approximations to the op-
timal boundary points x∗

l , x∗
u in the definition of the piece-

wise enveloping function h(x). In fact the only parameter of
the conditional density that is updated after a new sample
is drawn is d. All possible values for a, b, c could in prin-
ciple be calculated a priori so that one might find a set of
n(n − 1)/2 optimal proposal densities each parametrized by
d. Finding a transformation removing the parametric depen-
dence of the conditionals on d altogether seems unlikely but
would of course open up the possibility for the design of even
faster algorithms.

We are currently pursuing an application of the algo-
rithm to data sets obtained by standard molecular dynam-
ics simulations together with estimates of the equilibrium

(a) (b) (c)

FIG. 8. Histograms for implied time scale t2 corresponding to second largest eigenvalue λ2. The histogram of timescales generated by incorporating knowledge
about stationary probabilities (a) in comparison to the histogram of timescales generated by the non-reversible (b) and reversible method (c). It is clearly visible
that the sample mean (dashed line) gives a more accurate prediction of the true value (solid line) due to the additional information about stationary probabilities.
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distribution obtained from enhanced sampling algorithms
such as meta-dynamics, generalized ensemble simulations, or
umbrella sampling to obtain sharper estimates of dynamical
quantities.
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