dc.contributor.author
Kostrykin, Vadim
dc.contributor.author
Potthoff, Jürgen
dc.contributor.author
Schrader, Robert
dc.date.accessioned
2018-06-08T04:06:16Z
dc.date.available
2014-03-05T19:51:00.760Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/16582
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-20763
dc.description.abstract
We provide a class of self-adjoint Laplace operators −Δ on metric graphs with
the property that the solutions of the associated wave equation satisfy the
finite propagation speed property. The proof uses energy methods, which are
adaptations of corresponding methods for smooth manifolds.
de
dc.rights.uri
http://www.elsevier.com/journal-authors/author-rights and-responsibilities
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Finite propagation speed for solutions of the wave equation on metric graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Journal of Functional Analysis. - 263 (2012), 5, S.1198-1223
dc.identifier.sepid
24742
dcterms.bibliographicCitation.doi
10.1016/j.jfa.2012.06.005
dcterms.bibliographicCitation.url
http://linkinghub.elsevier.com/retrieve/pii/S0022123612002352
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019671
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003085
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
00221236