The honeycomb iridates A2IrO3 (A = Na, Li) constitute promising candidate materials to realize the Heisenberg-Kitaev model (HKM) in nature, hosting unconventional magnetic as well as spin-liquid phases. Recent experiments suggest, however, that Li2IrO3 exhibits a magnetically ordered state of incommensurate spiral type which has not been identified in the HKM. We show that these findings can be understood in the context of an extended Heisenberg-Kitaev scenario satisfying all tentative experimental evidence: (i) the maximum of the magnetic susceptibility is located inside the first Brillouin zone, (ii) the Curie-Weiss temperature is negative relating to dominant antiferromagnetic fluctuations, and (iii) significant second-neighbor spin exchange is involved.