We study the photocurrent response of topological insulator surface states to circularly polarized light for arbitrary oblique incidence. We describe the surface states within a Dirac model, including several perturbations such as hexagonal warping, nonlinear corrections to the mode velocity, and applied magnetic fields. We find that the photogalvanic current is strongly suppressed for the usual orbital coupling, prompting us to include the weaker Zeeman coupling. We find that the helicity-independent photocurrent dominates over the helicity-dependent contributions.