dc.contributor.author
Cohen, S.
dc.contributor.author
Harb, M. M.
dc.contributor.author
Ollagnier, A.
dc.contributor.author
Robicheaux, F.
dc.contributor.author
Vrakking, Marcus
dc.contributor.author
Barillot, T.
dc.contributor.author
Lépine, F.
dc.contributor.author
Bordas, C.
dc.date.accessioned
2018-06-08T03:36:10Z
dc.date.available
2015-02-02T18:43:07.252Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15539
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19727
dc.description.abstract
In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and
Ostrovsky proposed an experiment based on the projection of slow electrons
emitted by a photoionized atom onto a position-sensitive detector. In the case
of resonant excitation, they predicted that the spatial electron distribution
on the detector should represent nothing else but a magnified image of the
projection of a quasibound electronic state. By exciting lithium atoms in the
presence of a static electric field, we present in this Letter the first
experimental photoionization wave function microscopy images where signatures
of quasibound states are evident. Characteristic resonant features, such as
(i) the abrupt change of the number of wave function nodes across a resonance
and (ii) the broadening of the outer ring of the image (associated with
tunneling ionization), are observed and interpreted via wave packet
propagation simulations and recently proposed resonance tunneling mechanisms.
The electron spatial distribution measured by our microscope is a direct
macroscopic image of the projection of the microscopic squared modulus of the
electron wave that is quasibound to the atom and constitutes the first
experimental realization of the experiment proposed 30 years ago.
en
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Wave Function Microscopy of Quasibound Atomic States
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 110 (2013), 18, Artikel Nr. 183001/1-5
dc.identifier.sepid
32858
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.110.183001
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.110.183001
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik

refubium.mycore.fudocsId
FUDOCS_document_000000021740
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004457
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007