dc.contributor.author
Karamatskou, Antonia
dc.contributor.author
Kleinert, Hagen
dc.date.accessioned
2018-06-08T03:32:11Z
dc.date.available
2015-02-11T10:46:54.133Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15391
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19579
dc.description.abstract
In its geometric form, the Maupertuis Principle states that the movement of a
classical particle in an external potential V(x) can be understood as a free
movement in a curved space with the metric gμν(x) = 2M[V(x) - E]δμν. We extend
this principle to the quantum regime by showing that the wavefunction of the
particle is governed by a Schrödinger equation of a free particle moving
through curved space. The kinetic operator is the Weyl-invariant
Laplace–Beltrami operator. On the basis of this observation, we calculate the
semiclassical expansion of the particle density.
en
dc.rights.uri
http://www.worldscientific.com/page/authors/author-rights
dc.subject
Schrödinger equation in curved space
dc.subject
quantum particle motion in curved space
dc.subject
exact solutions
dc.subject
curved space quantum mechanics
dc.subject
geometric physics
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Geometrization of the Schrödinger equation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
International Journal of Geometric Methods in Modern Physics. - (2014), 11,
Artikel Nr. 1450066
dc.identifier.sepid
38392
dc.title.subtitle
Application of the Maupertuis Principle to quantum mechanics
dcterms.bibliographicCitation.doi
10.1142/S0219887814500662
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1142/S0219887814500662
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik

refubium.mycore.fudocsId
FUDOCS_document_000000021811
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004502
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0219-8878