dc.contributor.author
Micklitz, Tobias
dc.contributor.author
Altland, A.
dc.date.accessioned
2018-06-08T03:22:11Z
dc.date.available
2014-03-07
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/15027
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-19215
dc.description.abstract
States supported by chaotic open quantum systems fall into two categories: a
majority showing instantaneous ballistic decay, and a set of quantum
resonances of classically vanishing support in phase space. We present a
theory describing these structures within a unified semiclassical framework.
Emphasis is put on the quantum diffraction mechanism which introduces an
element of probability and is crucial for the formation of resonances. Our
main result is boundary conditions on the semiclassical propagation along
system trajectories. Depending on whether the trajectory propagation time is
shorter or longer than the Ehrenfest time, these conditions describe
deterministic escape, or probabilistic quantum decay.
en
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.title
Semiclassical theory of chaotic quantum resonances
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review E. - 87 (2013), 3, S.032918 (6 Seiten)
dc.identifier.sepid
33262
dcterms.bibliographicCitation.doi
10.1103/PhysRevE.87.032918
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevE.87.032918
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019835
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000003199
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1539-3755