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Semiclassical theory of chaotic quantum resonances
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States supported by chaotic open quantum systems fall into two categories: a majority showing instantaneous
ballistic decay, and a set of quantum resonances of classically vanishing support in phase space. We present a
theory describing these structures within a unified semiclassical framework. Emphasis is put on the quantum
diffraction mechanism which introduces an element of probability and is crucial for the formation of resonances.
Our main result is boundary conditions on the semiclassical propagation along system trajectories. Depending
on whether the trajectory propagation time is shorter or longer than the Ehrenfest time, these conditions describe
deterministic escape, or probabilistic quantum decay.
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I. INTRODUCTION

Quantum states populating “open” chaotic cavities decay
to the outside environment and, thence, have the status of
resonances. In spite of the ubiquity of the general setup—
open quantum chaos is realized in many of the devices
currently explored in mesoscopic physics, quantum optics,
and cold atom physics—salient features of these resonances
are not fully understood. While the deep quantum regime (the
Ehrenfest time tE , marking the diffractive disintegration of
minimal wave packages shorter than classical escape times td )
appears to be under reasonable control [1], it is the opposite,
semiclassical limit which poses unsettled issues [2].

Broadly speaking, the states populating an open cavity can
be grouped into two families: states evolving near classically
and escaping deterministically after a classical flight time,
and a fraction ∼exp(−tE/td ) of quantum resonances, whose
probabilistic decay is characterized by a finite imaginary
offset i�/2 to the real resonance energy E. The most basic
quantity characterizing the statistics of resonances of complex
energy z = E + i �

2 is the resonance density ρ(z). Although
the quantitative profile of that quantity is not fully understood,
the density appears to be gapped against the real axis, � = 0
(the existence of rare midgap states notwithstanding [2,3].)
The integrated number of resonances at a given value of E has
been found to obey the so-called fractal Weyl law, ρ ∝ h̄−df ,
where df is a nonuniversal fractal exponent.

Previous work on the phenomenon includes the formulation
of lower bounds on the resonance gap [4–6], semiclassical
approaches based on short periodic orbits trapped in the
open system [7], a description in terms of nonunitarily
evolving Husimi functions [8], phenomenology based on a
mixture of phase-space dynamics and random matrix theory,
respectively [9], and numerical analyses [2,5,8–12]. However,
a unified theory of resonance formation in terms of first
principle semiclassical dynamics appears to be missing and
the formulation of such a theory is the subject of the present
work.

Specifically, we will explore the quantum dynamics of
states concentrated on classical trajectories in terms of
phase-space Wigner functions. Assuming globally hyperbolic
classical dynamics we will describe how quantum fluctuations
operational on long trajectories convert the deterministic

classical escape of short trajectories into probabilistic quantum
decay.

Our analysis is organized in three conceptual steps. We
first introduce the phase-space language used in the rest of
the paper on a one-dimensional toy model (Sec. II). We then
generalize to the more complex setting of a higher dimensional
cavity (Sec. III), and derive effective boundary conditions
determining the decay rates of the system. Finally, (Sec. IV)
we analyze these equations for both short and long trajectories.
We conclude in Sec. V.

II. ONE-DIMENSIONAL TOY MODEL

Consider a one-dimensional “cavity” parametrized by the
spatial coordinate q ∈ [−q0,q0], while coordinates to the right
(left) of +q0 (−q0) define connecting “leads” (see Fig. 1).
We assume free intracavity particle dynamics, Ĥ0 = p̂2/2m

and, crucially, no backscattering barriers at the cavity-lead
interfaces.

Life times and energies of the resonant states supported by
the system may be calculated by matching solutions of the
cavity Schrödinger equation to outgoing boundary conditions
[13,14], i.e., by requiring that cavity wave functions ψ(q) and
their derivatives smoothly connect to vacuum wave functions
ϕ±(q) ≡ a± exp(±iqκ) at the right or left interface. Here,
a± = const, and κ = k − i k�

2 is a complex wave vector whose
real and imaginary part define the energy h̄k = (2mE)1/2 and
life time h̄k� ≡ �/v of resonant states, respectively, where
v = h̄k/m. The divergence of the reference states at spatial
infinity q → ±∞, is a formal means [13] to the fixation of
decay rates, as exemplified below.

For the intracavity wave function we make an ansatz
ψ(q) = ∑

σ=± aeσ [iφ(q)+k�vt(q)/2] in terms of left- and right-
propagating partial amplitudes where a = const, and the
somewhat unconventional denotation φ(q) = kq and t(q) =
q/v, for the real and imaginary contribution to the phase,
respectively, will be motivated shortly. With this choice, the
boundary conditions obtained by matching wave functions and
their derivatives at the left and right interface reduce to the
single algebraic equation

e−[i2φ(q0)+k�vt(q0)] = ∂qφ − k − i k�

2 (v∂qt − 1)

∂qφ + k − i k�

2 (v∂qt + 1)
|q0 . (1)
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FIG. 1. (Color online) Schematic illustration of the models
discussed in the text: (a) One-dimensional toy model consisting of a
clean cavity (grey region) and leads connected to it (white regions).
There is no backscattering at the cavity-lead interfaces and separation
into cavity and leads is largely arbitrary. (b) Two-dimensional clean
cavity with chaotic boundary scattering (grey region). Contact to the
“outside world” is due to fully transmitting openings connecting to
the reservoirs (white regions). Transitions from cavity to reservoirs
are again smooth.

Before evaluating this equation, let us translate from the
language of wave functions to a phase-space formulation.
To this end, we introduce the Wigner function W (q,p) =∫

(da) e−ipa/h̄ψ̄(q − a
2 )ψ(q + a

2 ), where (da) = da/(2πh̄).
For our specific system,

W (q,p) =
∑
σ=±

a2δ[p − σp(E)]eσk�vt(q) + · · · , (2)

where σ = ± labels the Wigner transform of the left and
right moving components, respectively, and the ellipses denote
rapidly oscillating interference contributions. In discarding the
latter, we lose track of the global phase of the wave function,
while the information on amplitudes and phase derivatives
necessary to evaluate boundary conditions is retained. Indeed,
it is straightforward to check that

a2eσk�vt(q) = |ψσ (q)|2 =
∫

(dp) Wσ (q,p),
(3)

σh̄∂qφ(q) =
∫

(dp) pWσ (q,p)∫
(dp) Wσ (q,p)

.

For the simple one-dimensional (1D) system, the linear
dependence φq = kq implies ∂qφ = k so that (1) reduces to

8E

�
e−�t(q0)/h̄ = 1 − v∂qt(q)|q=q0 , (4)

where we have “fixed a gauge” e−2iφ(q0) = i for the arbitrary
phase of the wave function and neglected contributions
k�/k � 1.

For the toy model at hand, v∂qt(q) = 1, which means
that the right hand side of (4) vanishes, and � → ∞ is the
only consistent solution. This reflects the fact that a wave
function will “decay” with probability unity upon passing
the reflectionless boundaries of the system. We next discuss

how the situation changes upon generalization to a higher
dimensional system with chaotic dynamics.

III. CHAOTIC CAVITY

We consider a two-dimensional cavity with ballistic Hamil-
tonian Ĥ = p̂2/2m and chaotic boundary scattering (see
Fig. 2). The cavity is open such that after an average time
td , much shorter than any of the relevant quantum time
scales, trajectories escape through one or several reflectionless
openings. We define the Wigner function of the system’s
resonance states by obvious generalization of Eq. (2), i.e.,
W (q,p) = ∫

(d2a) e−i(p·a/h̄)ψ̄(q − a
2 )ψ(q + a

2 ). To obtain the
intracavity evolution equations of W , one adds and subtracts
the Schrödinger equations of the resonances ψ and ψ̄ to
obtain [15]

[H ∗, W ]+ = 2E W, [H ∗, W ]− = −i� W. (5)

Here, H = p2/2m is the Hamilton function and [A ∗, B]∓ =
A ∗ B ∓ B ∗ A where the Moyal product of phase-space func-
tions A = A(q,p) is given by [16] A ∗ B = AB + ih̄

2 {A,B} +
O(h̄2), and { , } is the Poisson bracket.

We next consider the vicinity of an exceptionally long
trajectory γ0 spending time T � td inside the cavity. For
completeness we note that long trajectories in open systems are
found with low probability ∼ exp(−T/td ). They typically form
in the phase-space neighborhood of strange repellers realized
through periodic orbits trapped in the interior of the cavity
(see below for further comments on this aspect). Assuming
global hyperbolicity of the dynamics, we introduce a trajectory
coordinate, q ∈ [−vT /2,vT /2], a conjugate momentum p =
p(H ) = (2mH )1/2 transverse to the shell of conserved energy,
and a pair u,s of locally unstable and stable coordinates.
In the asymptotic neighborhood of γ0, the Hamiltonian can
then be approximated as H � H0 = p2

2m
+ λus, where λ is a

Lyapunov exponent. The corresponding dynamics is generated
by [H0

∗, . ]− = ih̄{H0, } ≡ −ih̄L, where the Liouvillian

L = v∂q + λ(u∂u − s∂s) (6)

FIG. 2. (Color online) On the definition of the different time pa-
rameters relevant to the trajectory dynamics. A trajectory γ0 (indicated
by a straight line along the upper front corner of the box) enters
or exits the system through phase-space interfaces Si/o. Spanning
the neighborhood of γ0 by a stable (unstable) coordinate u (s),
nearby trajectories contract towards (depart from) γ0 in the respective
coordinate directions. The exit out of the cavity neighborhood of γ0

then is through the system interface S0 (solid trajectories), or through
the “internal interface,” Co (dashed trajectories.) A similar distinction
applies to the entry points. Depending on the entry (exit) variants, each
trajectory neighboring γ0 gets assigned entry (exit) points xi (xo), a
timelike progression parameter τ , and a phase-space parametrization
x(τ ).

032918-2



SEMICLASSICAL THEORY OF CHAOTIC QUANTUM . . . PHYSICAL REVIEW E 87, 032918 (2013)

describes propagation in the direction of γ0, and exponential
expansion (contraction) in the u (s) coordinate. Nonlinear
corrections to H0 can be described as H = H0 + V , where
V = V (u,s) is a polynomial of degree > 2 in the variables u,s.
The corresponding modification of the dynamics, [V ∗, . ]− ≡
−ih̄(�L + Q), comprises a weak alteration of the classical
Liouvillian, �L, and a quantum generator

Q =
∑

n+m>1

cnmh̄n+m∂m
u ∂n

s , (7)

where cnm = cnm(q,u,s) are coefficient functions whose de-
tailed profile will not be of much importance throughout.
Although both contributions are nominally small in u,s, the
quantum generatorQ, will be seen to have a regularizing effect
on classical singularities [17], which will ultimately shape the
profile of the resonance density.

A. Life time in a chaotic cavity

Close to the trajectory, the first of Eqs. (5), [H ∗, W ]+ �
[H0

∗, W ]+ � 2(p2/2m)W = 2EW , simply describes the on-
shell fixation p � (2mE)1/2. Turning to the second equation,

h̄ (L + �L + Q) W (q,u,s) = �W (q,u,s), (8)

we first discuss the linear approximation, �L,Q = 0, before
including the correction terms in a second step.

For �L,Q = 0, (8) becomes a first order differential
equation which is solved in terms of a left- and a right-moving
contribution,

W (q,p,u,s) =
∑
σ=±

a2δ[p − σp(E)]eσk�vt(q,u,s), (9)

structurally similar to Eq. (2). Here, t(q,u,s) are effective
parameter functions generalizing t(q) of the toy model and
evolving uniformly along the trajectories γ ≡ γx piercing
the phase-space point x ≡ (q,u,s), Lt(x) = 1. To solve this
(partial first order differential) equation, we consider its char-
acteristics, i.e., the trajectory γx. On γx, the equation assumes
the form dτ t(x(τ )) = 1, where q(τ ) = q + vF τ , u(τ ) = ueλτ ,
s(τ ) = se−λτ , and (q,u,s) are starting values of the evolution.
We solve the characteristic equation as t(τ ) = τ + t0, where
τ increases uniformly until γx(τ ) hits the effective boundaries
of the problem, and t0 is a freely adjustable parameter.

To understand the role of the boundaries, note that γx
will leave the cavity either through a physical interface
So along with γ0 = γ(q,0,0) (cf. Fig. 3), or it will depart
from γ0 up to some classical threshold u � c within the
cavity (solid line). We assume that points separated from
γ0 by scales ∼c have become generic and will exit in the
classical, and hence negligibly short time �td . The union
Io ≡ So ∪ Co of So and the surface Co ≡ {u = c,s,q} then
defines the effective “outgoing interface” of our problem.
Similarly, the union Ii ≡ Si ∪ Ci of the left vacuum interface
Si and the surface Ci = {u,s = c,q} defines the incoming
interface. The traveling phase-space point x(τ ) = (q,u,s)(τ )
hits the exit interface Io, at the smaller of two times, τ =
to = to(q,u) = min[ T

2 − q

v
, 1
λ

ln( c
|u| )], depending on whether

So or Co is the terminal. Likewise, γx has entered the cavity

FIG. 3. (Color online) The information of Fig. 2 collapsed to
the two-dimensional sections spanned by the stable and the unstable
coordinate, and the trajectory parameter q, respectively. A phase-
space point (q,u,s) in the vicinity of γ0 propagates along a unique
classical trajectory γ . It will exit the cavity either through the interface
So or within the cavity through the surface Co. Similarly, the union
of the left vacuum interface Si together with the manifold Ci defines
the incoming interface.

through Ii at a large negative time τ = −ti = −ti(q,s) =
−min[ T

2 + q

v
, 1
λ

ln( c
|s| )]. Fixing the free parameter t0 such that

the temporal range of the trajectory is symmetric around zero,
t(τ = ti) = −t(τ = to), we find that the solution to Eq. (9)
is governed by the function t(x) = 1

2 [ti(q,s) − to(q,u)] while
Tγ ≡ ti + to is the intracavity flight time of γ . Notice that
for points x ∈ Io at the exit interface, to(x) = 0, meaning that
t(x) = Tγ /2 attains its maximal value.

Finally, the boundary conditions Eq. (1) are generalized by
replacing the one-dimensional variable t(q) by t(q,u,s), and
the derivative v∂q by L, i.e., a derivative acting in the direction
of the Hamiltonian flow [18]. The generalization of Eq. (1)
thence reads

8E

�
e−�t/h̄ = 1 − Lt, (10)

where t = t(x) = Tγ /2, and x ∈ Io is on the exit interface.
Equation (10) is a principal result of the present paper. In the
following we discuss its implications for different types of
trajectories.

IV. DISCUSSION OF THE RESULTS

A. Short trajectories

To start with, we consider trajectories γ which are ex-
ceptionally long-lived, T ≡ Tγ � td , yet short in comparison
to the scale tE ∼ 1

λ
ln(c2/h̄) [19] where quantum uncertainty

leads to the disintegration of semiclassically propagating wave
packets. As long as T < tE , the quantum generator Q does not
modify the dynamics in essential ways—a statement to be
verified below—and the same goes for the generator of weak
classical corrections, �L. We may thus take the boundary
condition (10) at face value, and conclude that due to the
homogeneous evolution Lt = 1, the right hand side of the
equation vanishes. As with the toy model, this implies a
diverging decay rate, � → ∞. In this divergence reflects
the fact that wave packages traveling on classically short
trajectories leave the cavity with certainty at the exit point.
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B. Long trajectories

We now turn to the case of long trajectories, T > tE .
For asymptotically long trajectories, T → ∞, the classical
shrinkage s = s(t) ∼ c exp(−λt) would lead to singularities
in the function ti(q,s) and, ultimately, in the Wigner function.
Within the present formalism, these singularities are regular-
ized on time scales larger than tE , where s � s(tE) ∼ h̄ has
shrunk down to quantum scales. On these scales, the quantum
generator Q of Eq. (7) is no longer small in comparison
to the classical generator L (while the correction �L to
the classical flow continues to be largely irrelevant). The
ensuing modifications of the dynamics can be described in
various ways (cf. Ref. [20] for a treatment tailored to the
formalism applied here), the invariable conclusion being that
the shrinkage of classically evolving variables gets cut off by
quantum fluctuations. Technically, this conclusion rests on the
observation that in the evolution equation for the variable s

the higher order derivatives ∼∂n>1
s present in the quantum

generator (7) build up “pressure” counteracting the classical
contraction. This is seen in explicit terms in the Fourier
or Laplace representation of the evolution equation, where
these derivatives assume the form of algebraic factors, cutting
the logarithmic “ultraviolet” singularities of the classical
equation. Referring to the Appendix for more details, we
note that to leading semiclassical accuracy functions which
in the classical theory evolve as f (q,|u|,|s|) get replaced by
f (q,|u| + h̄/c,|s| + h̄/c). Here, c is symbolic notation for
classical (h̄-independent) functions over which we have no
explicit control, and the substitution |u| → |u| + h̄ becomes
effectual in the large negative time asymptotics of a trajectory,
where u rather than s scales to small values.

To understand the consequences of this regularization
mechanism, consider the trajectory time parameter, t = ti/2
at the exit point of γ . Now notice that ti(q,|s|) → min[T/2 +
q/v,λ−1 ln(|s| + h̄/c)] = λ−1 ln(|s| + h̄/c) � tE , where we
used that T > tE . The crucial observation here is that the
regularization effectively truncates the in-time function ti at
values tE . As a consequence, the interface derivative Lt =
1
2L(ti − to) = 1/2 reduces to one-half of the value before
quantum regularization. Substitution of this value into Eq. (10)
shows that the quantum theory admits finite values of the decay
constant, determined by

�0

2
= h̄

tE
W

(
8EtE

h̄

)
= h̄

tE

[
ln

(
8EtE

h̄

)
+ · · ·

]
, (11)

where W is the Lambert function and ellipses denote sub-
leading double-“log” contributions. Equation (11) states the
decay rate in terms of the Ehrenfest time in combination
with nonuniversal short time cutoff h̄/E. However, in the
semiclassical limit, h̄ → 0, the dependence on E drops out, and
we are left with the asymptote �0 ∼ h̄λ. Before commenting
on this result, we note that the appearance of a finite decay
rate within our present formalism follows from the fact that,
by Heisenberg uncertainty, quantum mechanics is not capable
of resolving the phase-space fine structures pertaining to the
evolution of long trajectories Tγ > tE . Each such trajectory
should, rather, be thought of as a distribution defined by the
union of trajectories with uncertainty ∼h̄ in their phase-space

coordinates. At a given instance of time, a fraction of this
distribution escapes, as described by the rate �0.

C. Effective decay rate

Our above analysis was oversimplifying in that it treated
escape from an isolated long trajectory γ0 as tantamount to
escape into the lead vacuum. This picture ignores the fact
that escaping trajectories may get “folded back” into the
repeller domain supporting γ0, and thence be trapped again.
A statistical theory accounting for the renormalization of the
decay of an initial distribution centered around an isolated
trajectory by the complex structure of the embedding repeller
structure has been developed in Refs. [4,21]. The result of
that analysis is an effective renormalization of decay rates as
λ → λ(1 − d), where the factor (1 − d) effectively measures
the fraction of trajectories managing to escape the repeller and
d is the fractal (information) dimension of the latter [4,22].
The ensuing effective rate, �0 → � ≡ h̄λ(1 − d), is generally
identified with the inverse of the classical escape time of the
system. We finally caution that the decay rate will be subject
to sources of fluctuations which are beyond the scope of our
analysis. Notably, the Lyapunov exponents may vary between
trajectories, and along individual trajectories. The escape from
the repeller may introduce additional uncertainty. Our result,
thus, yields a characteristic value for the decay rate, where the
important role of fluctuations is left unaccounted for. Other
effects not captured by our analysis include transient features
of the classical dynamics outside the repeller’s area which, as
recent work shows [23,24], may have important influence on
the resonances of open quantum system.

D. Fractal Weyl law and random matrix regime

For completeness we note that a finite quantum mechanical
decay rate is attributed to states located in the vicinity of
exceptionally long trajectory. Due to the exponential scarcity
of these trajectories, the corresponding phase-space measure
scales as [10] n� = �Ee−tE/td ∼ �Eh̄1/tdλ, where �E is the
phase-space volume of the energy shell (in units h̄), implying
that n� ∼ h̄−df with fractal dimension df = 1 − 1/λtd [25].
We finally note that in the quantum regime, tE < td , which is
complementary to the semiclassical regime td < tE studied
here, random matrix scattering theory predicts [26] � ∼
h̄
td

ln(Ẽtd/h̄), where Ẽ is some cutoff energy scale. Comparison
with (11) shows that the two results match at the boundary
td ∼ tE . However, we cannot say whether or not this matching
is coincidental.

V. SUMMARY

We have formulated a semiclassical theory of quantum
escape processes in open chaotic systems. The most important
single contribution of our approach is that it quantitatively de-
scribes how deterministic escape after the traversal of generic
short trajectories through the system gives way to quantum
mechanical decay on long trajectories. The latter define the
support of resonances whose life times we estimated by im-
posing effective phase-space boundary conditions. Somewhat
counterintuitively, it turns out that the ensuing decay rates
are classically short �0 ∼ h̄λ, although the relevant escape
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dynamics takes place on long trajectories T > tE . Finally,
the escape of individual long trajectories as described in the
present paper defines only an initializing stage of the decay of
a more complicated repeller structure. As a result, the decay
rate � is subject to renormalization �0 → � = h̄λ(1 − d)
where d is the fractal repeller dimension. Qualitatively, the
renormalization factor accounts for the probability that a state
gets recaptured by the repeller structure after escaping an in-
dividual trajectory. However, a quantitative description of that
secondary mechanism is beyond the scope of our approach.
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APPENDIX: REGULARIZATION

We here discuss how quantum fluctuations regularize the
unlimited classical contraction of the stable coordinate s in a
system with globally hyperbolic dynamics. In the language of
Eqs. (6) and (7) of the main text, the dynamics of the variable
s is described by a differential equation of the structure⎛

⎝s∂s +
∑
n�1

cnh̄
2n+1∂2n+1

s

⎞
⎠ f (s) = −αf (s), (A1)

where α > 0, and in a manner inessential to the present
argument the coefficients cn may depend on the variables
q,u,s.

Considering positive starting values, s > 0 (the extension
to negative values is straightforward), we introduce a Laplace
representation

f (s) =
∫ ∞

0
dz e−szg(z) (A2)

in which (A1) takes the form [27]

∂zg(z) = −
⎛
⎝1 − α

z
+

∑
n�1

cnh̄
2n+1z2n

⎞
⎠ g(z). (A3)

The general solution of this equation is found by straight-
forward integration over z, and when inserted into (A2)
gives

f (s) = c0

∫ ∞

0
dz e−szzα−1e− ∑

n�1 [cn/(2n+1)](h̄z)2n+1
(A4)

with an integration constant c0. Equation (A4) now illustrates
the role played by higher differential operators in (A1).

To make the point, let us for the moment consider the first
order differential equation obtained from (A1) by setting all
cn = 0. The resulting function

f 0(s) = c0

∫ ∞

0
dz e−szzα−1 = c0

sα
(A5)

then displays the singular at small values of s plaguing the
classical evolution equation of the stable coordinate.

In the full solution Eq. (A4) the exponential factor
e− ∑

n�1 [cn/(2n+1)](h̄z)2n+1
cuts the small-s or large-z singularity

at values z ∼ 1/h̄. The resulting integral can be estimated by
a regularized function

f (s) = c0

(s + h̄)α
. (A6)

Finally, notice that our argument crucially relies on assumed
positivity of the coefficients cn. While the present construction
cannot prove this feature, positivity is required on principal
grounds to ensure stability of the dynamics. (Otherwise
the Wigner distribution would cease to exist.) To actually
demonstrate this stability, one has to work harder as in, e.g.,
Refs. [17,28]. A discussion tailored to the present formalism
is contained in Ref. [20].
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