We irradiate a ZnTe single crystal with 10-fs laser pulses at a repetition rate of 80 MHz and investigate its resulting gradual modification by means of coherent-phonon spectroscopy. We observe the emergence of a phonon mode at about 3.6 THz whose amplitude and lifetime grow monotonously with irradiation time. The speed of this process depends sensitively on the pump-pulse duration. Our observations strongly indicate that the emerging phonon mode arises from a Te phase induced by multiphoton absorption of incident laser pulses. A potential application of our findings is laser-machining of microstructures in the bulk of a ZnTe crystal, a highly relevant electrooptic material.