We introduce a new framework for constructing topological quantum memories, by recasting error recovery as a dynamical process on a field generating cellular automaton. We envisage quantum systems controlled by a classical hardware composed of small local memories, communicating with neighbours and repeatedly performing identical simple update rules. This approach does not require any global operations or complex decoding algorithms. Our cellular automata draw inspiration from classical field theories, with a Coulomb-like potential naturally emerging from the local dynamics. For a 3D automaton coupled to a 2D toric code, we present evidence of an error correction threshold above 6.1% for uncorrelated noise. A 2D automaton equipped with a more complex update rule yields a threshold above 8.2%. Our framework provides decisive new tools in the quest for realising a passive dissipative quantum memory.