dc.contributor.author
Schroer, Bert
dc.date.accessioned
2018-06-08T03:08:15Z
dc.date.available
2015-02-10T13:23:49.304Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14559
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18751
dc.description.abstract
The main aim of this work is to relate integrability in QFT with a complete
particle interpretation directly to the principle of causal localization,
circumventing the standard method of finding sufficiently many conservation
laws. Its precise conceptual-mathematical formulation as “modular
localization” within the setting of local operator algebras also suggests
novel ways of looking at general (non-integrable) QFTs which are not based on
quantizing classical field theories. Conformal QFT, which is known to admit no
particle interpretation, suggest the presence of a “partial” integrability,
referred to as “conformal integrability”. This manifests itself in a “braid-
permutation” group structure which contains in particular informations about
the anomalous dimensional spectrum. For chiral conformal models this reduces
to the braid group as it is represented in Hecke- or Birman-Wenzl-algebras
associated to chiral models. Another application of modular localization
mentioned in this work is an alternative to the BRST formulation of gauge
theories in terms of stringlike vectorpotentials within a Hilbert space
setting.
en
dc.rights.uri
http://www.springer.com/gp/open-access/authors-rights
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Modular Localization and the Foundational Origin of Integrability
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Foundations of Physics. - 43 (2013), 3, S. 329-372 (Verlagsfassung)
dc.identifier.sepid
26524
dcterms.bibliographicCitation.doi
10.1007/s10701-013-9699-3
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1007/s10701-013-9699-3
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000021798
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000004496
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0015-9018