Plasmonic absorption enhancement by metal nanoparticles strongly relies on the local electric field distributions generated by the nanoparticles. Therefore, here we study random assemblies of metal nanoparticles as they are widely considered for solar cell application with scanning near-field optical microscopy. A collective scattering behavior is observed despite a resolution on the particle size. We find variations in scattering intensity on a length scale several times larger than in the topography. FDTD (finite-difference time domain) simulations show the impact of irregularities and size variations on the scattering behavior. An understanding of the plasmonic scattering behavior at the nanometer scale will support the successful application of nanoparticles for absorption enhancement in thin-film solar cells.