dc.contributor.author
Krüger, Janine
dc.contributor.author
Brachs, Sebastian
dc.contributor.author
Trappiel, Manuela
dc.contributor.author
Kintscher, Ulrich
dc.contributor.author
Meyborg, Heike
dc.contributor.author
Wellnhofer, Ernst
dc.contributor.author
Thöne-Reineke, Christa
dc.contributor.author
Stawowy, Philipp
dc.contributor.author
Östman, Arne
dc.contributor.author
Birkenfeld, Andreas L.
dc.contributor.author
Böhmer, Frank D.
dc.contributor.author
Kappert, Kai
dc.date.accessioned
2018-06-08T03:04:51Z
dc.date.available
2015-08-18T09:04:52.336Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14471
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18663
dc.description.abstract
Insulin resistance can be triggered by enhanced dephosphorylation of the
insulin receptor or downstream components in the insulin signaling cascade
through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced
phosphatase-1 (DEP-1) resulted in an improved metabolic status in previous
analyses. This phenotype was primarily caused by hepatic DEP-1 reduction. Here
we further elucidated the role of DEP-1 in glucose homeostasis by employing a
conventional knockout model to explore the specific contribution of DEP-1 in
metabolic tissues. Ptprj (-/-) (DEP-1 deficient) and wild-type C57BL/6 mice
were fed a low-fat or high-fat diet. Metabolic phenotyping was combined with
analyses of phosphorylation patterns of insulin signaling components.
Additionally, experiments with skeletal muscle cells and muscle tissue were
performed to assess the role of DEP-1 for glucose uptake. High-fat diet fed-
Ptprj (-/-) mice displayed enhanced insulin sensitivity and improved glucose
tolerance. Furthermore, leptin levels and blood pressure were reduced in Ptprj
(-/-) mice. DEP-1 deficiency resulted in increased phosphorylation of
components of the insulin signaling cascade in liver, skeletal muscle and
adipose tissue after insulin challenge. The beneficial effect on glucose
homeostasis in vivo was corroborated by increased glucose uptake in skeletal
muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj
(-/-) mice. Together, these data establish DEP-1 as novel negative regulator
of insulin signaling.
en
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Density-enhanced phosphatase-1
dc.subject
Glucose homeostasis
dc.subject
Insulin signaling
dc.subject
Insulin resistance
dc.subject
Phosphorylation
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft
dc.title
Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout
mice
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Molecular Metabolism. - 4 (2015), 4, S. 325-336
dc.identifier.sepid
44078
dcterms.bibliographicCitation.doi
10.1016/j.molmet.2015.02.001
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1016/j.molmet.2015.02.001
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000022917
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005273
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
22128778