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Enhanced insulin signaling in density-enhanced
phosphatase-1 (DEP-1) knockout mice
Janine Krüger 1, Sebastian Brachs 2, Manuela Trappiel 1, Ulrich Kintscher 3, Heike Meyborg 4,
Ernst Wellnhofer 4, Christa Thöne-Reineke 5, Philipp Stawowy 4, Arne Östman 6, Andreas L. Birkenfeld 2,
Frank D. Böhmer 7, Kai Kappert 1,*
ABSTRACT

Objective: Insulin resistance can be triggered by enhanced dephosphorylation of the insulin receptor or downstream components in the insulin
signaling cascade through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced phosphatase-1 (DEP-1) resulted in an
improved metabolic status in previous analyses. This phenotype was primarily caused by hepatic DEP-1 reduction.
Methods: Here we further elucidated the role of DEP-1 in glucose homeostasis by employing a conventional knockout model to explore the
specific contribution of DEP-1 in metabolic tissues. Ptprj�/� (DEP-1 deficient) and wild-type C57BL/6 mice were fed a low-fat or high-fat diet.
Metabolic phenotyping was combined with analyses of phosphorylation patterns of insulin signaling components. Additionally, experiments with
skeletal muscle cells and muscle tissue were performed to assess the role of DEP-1 for glucose uptake.
Results: High-fat diet fed-Ptprj�/� mice displayed enhanced insulin sensitivity and improved glucose tolerance. Furthermore, leptin levels and
blood pressure were reduced in Ptprj�/� mice. DEP-1 deficiency resulted in increased phosphorylation of components of the insulin signaling
cascade in liver, skeletal muscle and adipose tissue after insulin challenge. The beneficial effect on glucose homeostasis in vivo was corroborated
by increased glucose uptake in skeletal muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj�/� mice.
Conclusion: Together, these data establish DEP-1 as novel negative regulator of insulin signaling.

� 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The vast majority of worldwide diabetes cases are related to type 2
diabetes, which is characterized by insulin resistance and hypergly-
cemia [1]. Insulin resistance, a state of impaired action of insulin on
insulin-responsive tissues, such as skeletal muscle, liver, and fat, is
critically associated with hypertension, atherosclerosis, hyperlipid-
emia, and, in turn, cardiovascular disease [2,3]. Obesity can promote
and has been associated with insulin resistance [4].
Insulin exerts its function via ligating the insulin receptor (IR), a
transmembrane receptor tyrosine kinase (RTK). Insulin binding is
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followed by activation of the IR’s cytosolic kinase activity, leading to
both auto- and substrate phosphorylation, and activation of several
downstream signaling mediators, including phosphatidylinsositol-3-
kinase (PI3K), Akt, and Ras/MAP kinase. Involving the signaling
molecule Akt, cells translocate the glucose transporter GLUT4 to the
membrane in adipose tissue and skeletal muscle for glucose uptake,
resulting in reduced blood glucose [5]. Among other causes, insulin
resistance was shown to involve reduced PI3K/Akt activation [2].
Key regulators of IR signaling are protein tyrosine phosphatases (PTPs).
PTPs dephosphorylate phosphotyrosine residues of the IR, tightly
regulating the activation status and subsequent signaling events.
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“Classical PTPs”, a cysteine-based enzyme subgroup with strict
phosphotyrosine-specificity, share the catalytic signature motif V/I-H-
C-S-X-G [6]. Interestingly, PTP activity in insulin-sensitive tissues
was found elevated in obese subjects [7], while weight loss signifi-
cantly reduced PTP activity [8,9]. Among the 38 classical PTPs, only a
subset of these phosphatases has been identified that target the IR
kinase [10e12]. A prominent negative regulator of IR signaling is
PTP1B (PTPN1) [13,14]. PTP1B targets and dephosphorylates the IR at
the sites pY1162/pY1163, thus diminishing IR activity, insulin signaling
and metabolic action [13e15]. Transgenic overexpression of PTP1B in
muscle resulted in insulin resistance [16], while increased PTP1B
levels were observed in insulin-resistant humans and rodents in adi-
pose tissue and skeletal muscle [17,18]. An inducible liver-specific
PTP1B knockdown improved both lipid homeostasis and glucose
tolerance in mice subjected to high-fat diet (HFD) [19]. The expression
of the leukocyte common antigen-related phosphatase (LAR, PTPRF)
was shown to be increased in skeletal muscle of insulin-resistant
rodents/humans [8,20e22], and overexpression of LAR in mouse
skeletal muscle reduced insulin signaling and glucose uptake, leading
to insulin resistance [21]. Src homology region 2 domain-containing
phosphatase-1 (SHP-1, PTPN6) interferes with insulin signaling, and
mice deficient for SHP-1 displayed improved IR signaling in skeletal
muscle and liver [11]. Furthermore, targeting low molecular weight
protein tyrosine phosphatase (LM-PTP, ACP1) also improved insulin
sensitivity [23]. In contrast, muscle-specific knockout of the cyto-
plasmic T-Cell PTP (TC-PTP, PTPN2) failed to result in a metabolic
phenotype and did not affect the development of insulin resistance in
mice subjected to HFD-induced obesity [24]. These findings sub-
stantiate the notion that only specific PTPs are of regulatory importance
for IR activation and insulin signaling.
DEP-1/PTPRJ (also named CD148) is an ubiquitously expressed
transmembrane, receptor-like PTP, initially linked to mechanisms of
contact inhibition in cell growth [25], which was later implicated in a
number of physiological and pathological processes. For example, a
role of DEP-1 has been established for thrombocyte function [26,27]
and in determining neointima formation after catheter-induced
vascular injury [28]. Signaling of various different RTKs is negatively
regulated by DEP-1, including the hepatocyte growth factor receptor c-
Met [29], and the platelet-derived growth factor receptor beta [28,30].
We recently identified DEP-1 as being upregulated in obese mice; DEP-
1 was found being translocated to close proximity of the IR in liver
tissues upon insulin challenge in situ [31], and recombinant DEP-1
dephosphorylated the IR in vitro [31,32]. Furthermore, antisense oli-
gonucleotides against DEP-1, primarily downregulating DEP-1 in liver,
improved insulin sensitivity, and reduced basal glucose level and body
weight [31]. These findings suggested DEP-1 as a novel physiological
regulator of IR signaling, and elevated expression of DEP-1 in insulin-
responsive tissues as a possible pathophysiological mechanism for
insulin resistance. In the present study, we sought to further elucidate
the role of DEP-1 in insulin signaling and glucose homeostasis
employing a DEP-1 deficient mouse strain.

2. MATERIALS AND METHODS

2.1. Animal model
Heterozygous C57BL/6-Ptprj mice were purchased from Deltagen (San
Mateo, CA). Male littermates characterized as wild-type or Ptprj�/�

were included in the experiment aged 4e6 weeks and divided into four
groups: wild-type (n ¼ 8) and Ptprj�/� mice (n ¼ 8) fed ad libitum a
low-fat diet (LFD) (10% kcal from fat; Brogaarden, Gentofte, Denmark;
D12450B) and wild-type (n ¼ 10) and Ptprj�/� mice (n ¼ 10) fed ad
326 MOLECULAR METABOLISM 4 (2015) 325e336 � 2015The Authors. Published by Elsevier GmbH.
libitum a high-fat diet (HFD) (60% kcal from fat; Brogaarden; D12492)
to induce insulin resistance [33] for 12 weeks. Specific dietary infor-
mation is provided in Supplementary Table 1. Animals were housed in
groups with a 12 h light and 12 h dark cycle (lights on at 06:00 a.m.,
lights off at 06:00 p.m.). For analysis of ex vivo insulin signaling, insulin
(10 U/kg) (Insuman� Rapid, Sanofi Aventis, Berlin, Germany) was
injected intravenously 2 min before mice were sacrificed. Afterwards
organs were excised, weighed, shock-frozen in liquid nitrogen and
stored at �80 �C until further use. The study was conducted in
accordance with the Principles of Laboratory Care and approved by the
Landesamt für Gesundheit und Soziales (LAGeSo, Berlin, Germany).

2.2. Metabolic phenotyping (body weight, LabMaster, GTT, ITT,
ELISA, blood pressure)
Body weight was measured twice weekly throughout the study. Food
intake, respiratory exchange ratio (RER), and locomotor activity were
measured using an indirect calorimetry system (LabMaster, TSE
Systems; Bad Homburg, Germany) starting after the first 8 weeks of
feeding. Mice were placed in the calorimetry systems for 24 h.
Measurements were taken both over the entire 24 h period and during
defined time periods, as outlined in the figure legends. An intraperi-
toneal insulin tolerance test (ITT) using a dose of 0.5 U/kg insulin
(Insuman� Rapid, Sanofi Aventis, Berlin, Germany) and an intraperi-
toneal glucose tolerance test (GTT) with 1 g/kg glucose (Glucosteril,
Fresenius, Bad Homburg, Germany) were carried out in 4 h and 12 h
fasted mice, respectively. Tail vein blood was used for measuring
glucose concentration with a glucometer (Precision Xceed, Abbott,
Wiesbaden, Germany) at time points indicated. Before animals were
sacrificed, serum was isolated from blood for measurement of insulin,
leptin, resistin, monocyte chemotactic protein-1 (MCP-1) and inter-
leukin 6 (IL-6) concentration by Milliplex ELISA according the manu-
facturer’s instructions (Millipore, Schwalbach, Germany). Only valid
values above the detection limit were used in the analyses, and
numbers of included animals per parameter are stated in the figure
legend. Systolic blood pressure was recorded by tail-cuff measure-
ments (Power Lab 4/20 with tail-cuff MLT125/M, both from ADIn-
struments, Spechbach, Germany). For each mouse between three and
eight separate blood pressure values were recorded within a period of
20e60 min between 09:00 a.m. and 12:00 p.m., and the mean was
calculated for each mouse and group.

2.3. Protein tyrosine phosphatase activity
Activity of DEP-1 by using a radioactive labeled peptide was measured
after immunoprecipitation with anti-DEP-1 (AF1934, 1 mg per condi-
tion, R&D Systems, Wiesbaden, Germany) in different metabolic tis-
sues as described elsewhere in Ref. [31]. In order to minimize potential
in vitro-induced oxidation of PTPs and to determine total DEP-1 activity
as a measure of DEP-1 expression, analyses were performed including
addition of 50 mM dithiothreitol (DTT) to immunoprecipitates.

2.4. Quantitative real-time PCR (qRT-PCR)
RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instruction for purification from
cells and tissue (soleus skeletal muscle). Synthesis of cDNA was
performed with SuperScript�II (Invitrogen, Karlsruhe, Germany). RT-
PCR was performed with SybrGreen (Applied Biosystems, Darmstadt,
Germany) in duplicate per condition. The expression of analyzed
genes was normalized to the average expression of the housekeeping
gene Rn18s. The following primer sequences (final concentrations
100 nmol/l) were used (forward and reverse, respectively): Rn18s 50-
GGACTCTTTCGAGGCCCTGTA-30, 50-CACCAGACTTGCCCTCCAAT-30;
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Ptprj 50-GCAGTGTTTGGATGTATCTTT-30, 50-CTTCATTATTCTTGGCAT
CTGT-30; Slc2a1 50-GCAGTTCGGCTATAACACTGG-30, 50-GCGGTGGT
TCCATGTTTGATTG-30; Slc2a4 50-GTGACTGGAACACTGGTCCTA-30,
50-CCAGCCACGTTGCATTGTAG-30; Insr 50-C-AATGGGACCACTGTAT
GCATCT-30, 50-ACTCGTCCGGCACGTACAC-30; Ptpn1 50-CGGGAGGT
CAGGGACCTT-30, 50-GGGTCTTTCCTCTTGTCCATCA-30; Ptpn6 50-CGT
ACCCTCCCGCTGTGA-30, 50-TTTTCGTACACCTCCTCCTTGTG-30; Bax
50-TGAAGACAGGGGCCTTTTTG-30, 50-AATTCGCCGGAGACACTCG-30;
Bcl2 50-CCTGTGGATGACTGAGTACCTGAA-30, 50-CTACCCAGCCTCCG
TTATCCT-30.

2.5. Immunoblotting
Preparation of protein lysates and wheat germ agglutinin precipitation
(for DEP-1 expression analyses) were performed as described in Ref.
[31]. Immunoblotting was done by standard protocols with primary
antibodies: anti-phospho insulin receptor (IR) Y 972 (ab5678, 1:5000),
anti-phospho IR Y 1158 (ab78355, 1:1000), anti-phospho IR Y 1361
(ab60946, 1:1000) (Abcam, Cambridge, UK), anti-DEP-1 (AF1934,
1:1000 of 1 mg/ml dilution, R&D Systems, Wiesbaden, Germany), anti-
phospho Akt (#4060, 1:2000, Ser 473), anti-phospho Akt (#9275,
1:2000, Thr 308), anti-pan Akt (#9272, 1:1000) and anti-IR (#3025,
1:1000, 4B8) (Cell Signaling/New England Biolabs, Frankfurt, Germany).
Secondary antibodies used were: HRP-linked anti-rabbit (NA934,
1:10,000, GE Healthcare), HRP-linked anti-goat (P 0160, 1:2000, Dako).
Densitometric analyses were performed using ImageJ 1.46r.

2.6. Cell culture and siRNA transfection
C2C12 myoblasts were purchased from the American Type Culture
Collection (ATCC�, Wesel, Germany) and maintained in DMEM con-
taining 10% FBS and 1% penicillin/streptomycin at 37 �C in an at-
mosphere of 95% air and 5% CO2. Differentiation to myotubes was
induced when myoblasts reached 90% confluence by using DMEM
containing 2% horse serum and 1% penicillin/streptomycin. The cul-
ture medium was refreshed daily until polynucleated myotubes were
obtained after 6 d. Transfection was carried out using 10 nmol/l siRNA
against DEP-1 (Thermo Fisher Scientific, Bonn, Germany), and Lip-
ofectamine� RNAiMAX (Invitrogen, Karlsruhe, Germany) for 72 h ac-
cording to the manufacturer’s recommendations. Cells transfected
with non-targeting siRNA served as control.

2.7. Glucose uptake in cells
Myotubes were transfected and left resting for 48 h followed by serum-
free starvation overnight. Cells were incubated for 1 h in glucose
deficient medium. Insulin (100 nmol/l) was added for 15 min followed
by addition of deoxy-D-glucose (Sigma, Taufkirchen, Deutschland) and
1 mCi/ml deoxy-D-glucose, 2-[1,2e3H (N)] (PerkinElmer, Rodgau,
Germany) at a final concentration of 100 mmol/l for 30 min. The uptake
was stopped by two washing steps with PBS, and cell lysis was carried
out in 50 mmol/l NaOH. Uptake of radioactively labelled glucose was
measured in a scintillation counter. Results were normalized to
unstimulated cells transfected either with non-targeting siRNA or DEP-
1 siRNA, and are presented as percent of the corresponding treatment
procedure.

2.8. Glucose uptake in muscle tissue
Paired soleus muscles were dissected in deep anesthesia (Ketamin/
Xylazine 100 mg/kg/12 mg/kg) and subsequently placed in glass-vials
for two incubation steps with continuous shaking in a heated (35 �C)
water bath. One muscle from each pair was incubated without insulin
(basal), and the contralateral muscle was incubated with 5 mU/ml
insulin during both incubation steps. First, muscles were incubated in
MOLECULAR METABOLISM 4 (2015) 325e336 � 2015 The Authors. Published by Elsevier GmbH. This is an op
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glass vials containing 0.5 ml of pregassed Krebs-Henseleit buffer
(KHB; 95% O2-5% CO2 for 15 min at 4 �C) supplemented with 0.1%
bovine serum albumin, 2 mM sodium pyruvate, 6 mM mannitol, and
0 (basal), or 5 mU/ml insulin for 30 min. After the initial equilibration
step, each muscle was transferred to a second glass vial containing
0.5 ml of KHBeBSA solution supplemented with 2 mM sodium py-
ruvate, the same insulin concentration used in the previous step, 1 mM
2-deoxyglucose (2-DG) (including a final specific activity of 2.25 mCi/
mmol 2-deoxy-[3H]glucose), and 6 mM mannitol (including a final
specific activity of 0.022 mCi/mmol [14C]mannitol) for 15 min.
Thereafter, muscles were rapidly blotted on filter paper moistened with
ice-cold KHBeBSA, trimmed, freeze-clamped in liquid nitrogen and
stored at �80 �C for later processing and analysis. Frozen muscles
used for glucose uptake were weighed and homogenized in 0.3 M
perchloric acid for 3� 4 min. Homogenates were incubated for 10 min
at 95 �C, centrifuged for 15 min at 15,000 g to remove insoluble
material. 3H and 14C disintegrations per minute were measured by a
liquid scintillation counter and 2-DG uptake was calculated as
described in Ref. [34].

2.9. Islets studies
Frozen pancreas sections (5 mm) were mounted on SuperFrost Plus
slides (R. Langenbrinck, Emmendingen, Germany). Sections were
immunostained with primary anti-insulin antibody (MOB234, 1:200,
BIOTREND Chemikalien GmbH, Cologne, Germany), with a biotinylated
secondary antibody (anti-mouse, E0464, 1:1000; Dako, Hamburg,
Germany) and by using the Vectastain ABC kit PK-6100 (Vector, Bur-
lingame, CA, USA), the peroxidase kit ARK (Dako, Hamburg, Germany),
and AEC solution (Sigma, Taufkirchen, Deutschland), and were
counterstained with hematoxylin. The relative area of beta cells was
determined as the percentage of pancreatic area occupied by insulin
immunoreactive cells. Images of stained sections were analyzed using
ImageJ 1.48.

2.10. Statistical analysis
Statistical differences between the groups were determined using two-
way ANOVA analysis as well as the non-parametric ManneWhitney U
test and the parametric unpaired Student’s t test using SPSS Statistics
21. The data are expressed as means � SEM, and p < 0.05 was
considered statistically significant.

3. RESULTS

3.1. DEP-1 expression in metabolic tissues and characterization of
Ptprj�/� mice
The expression of DEP-1 was analyzed in liver, skeletal muscle and
adipose tissue from wild-type mice applying activity measurements
under reducing conditions, as outlined in the Materials and methods
section. The results revealed DEP-1 being five-fold higher expressed
in adipose tissue and eight-fold higher expressed in liver compared to
DEP-1 skeletal muscle (Figure 1A). After genotyping, activity assays
along with immunoblotting were applied to confirm the absence of
DEP-1 in Ptprj�/� mice (Figure 1BeD). As shown, DEP-1 protein and
activity were undetectable in liver tissue of knockout mice.

3.2. Enhanced insulin sensitivity in Ptprj�/� mice
We first assessed the effect DEP-1 deficiency on body weight under
either LFD or HFD for 8 weeks, which represented the time period
before metabolic phenotyping was performed. As depicted in Figure 2A
only a slight decrease in body weight in Ptprj�/� mice was detectable
in both diets compared to wild-type mice, which did not reach
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 327
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Figure 1: DEP-1 expression and genotyping of wild-type and Ptprj�/� mice. (A) DEP-1 expression based on activity measurements under reduced conditions (as outlined in the
Materials and Methods section) in metabolic tissues derived from wild-type mice. (B) Wild-type and Ptprj�/� mice were characterized by PCR. (C, D) Confirmation of DEP-1
knockout in liver tissue visualized by immunoblotting and DEP-1 activity measurements (n ¼ 3e4 mice per genotype).
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statistical significance. Knockout of DEP-1 had no influence on heart-,
kidney-, liver- and spleen weight, neither at LFD nor at HFD, while
perirenal fat was lower in LFD fed Ptprj�/� mice (Supplementary
Table 2). Epididymal fat weight was significantly higher in Ptprj�/�

mice after HFD.
Metabolic phenotyping was performed to evaluate the consequence of
DEP-1 deletion on insulin sensitivity. Wild-type and Ptprj�/� mice on
LFD and HFD were subjected to an ITT and GTT. Insulin sensitivity in
Ptprj�/� mice was improved per se and was even more pronounced in
HFD fed mice (Figure 2B,C). Ptprj�/�-HFD mice were also character-
ized by lower HOMA indices compared to wild-type littermates (not
shown). Further, glucose homeostasis was improved in Ptprj�/� mice,
indicated by reduced glucose levels measured at individual time points
after glucose injection in both LFD- and HFD fed mice (Figure 2D,E).
Notably, glucose levels of Ptprj�/�-HFD mice were lower from the
beginning and values in the control mice were higher at any time point
after insulin injection.
In addition, mice were monitored for parameters of energy meta-
bolism. RER, locomotor activity, and food intake were recorded
(Figure 2F,G, Supplementary Figure 1AeJ). Mice fed HFD showed
lower RER and reduced motility compared with LFD fed mice. DEP-1
knockout resulted in increased RER in mice fed both diets, suggest-
ing a higher utilization of carbohydrates (Figure 2F,G). No statistical
difference in motility between Ptprj�/� and wild-type mice was
detected, and food intake also remained unchanged (Supplementary
Figure 1AeJ).
Taken together, Ptprj�/� mice showed an improved metabolic
phenotype with mildly enhanced glucose tolerance, higher RER, and
decreased insulin resistance under HFD.

3.3. Ptprj�/� mice show increased phosphorylation levels in insulin
signaling components in metabolic tissues
The metabolic findings suggested a role of DEP-1 as negative regulator
of insulin signaling. To directly assess this possibility, key in-
termediates of the insulin signaling pathway were analyzed in liver,
skeletal muscle and adipose tissue of Ptprj�/� mice after insulin
challenge in vivo. Different IR tyrosine-phosphorylation sites were
monitored by immunoblotting analysis. As a key event downstream of
IR activation, we further assessed Akt phosphorylation at the two sites
Thr308 and Ser473.
328 MOLECULAR METABOLISM 4 (2015) 325e336 � 2015The Authors. Published by Elsevier GmbH.
In liver tissue, we detected a tendency of enhanced IR phosphorylation
after insulin challenge in Ptprj�/� mice, however, without any evi-
dences of site-selectivity (Figure 3A). Moreover, we detected a sig-
nificant increase in insulin-induced Akt phosphorylation at site Ser473

in Ptprj�/� mice both for the LFD and the HFD feeding group
(Figure 3AeC). The Akt phosphorylation at Thr308 was reduced in the
HFD group, however without any impact of DEP-1 deficiency
(Figure 3D,E).
The same parameters were also assessed in skeletal muscle (Figure 4)
and adipose tissue (Figure 5). IR phosphorylation after insulin chal-
lenge in skeletal muscle was e in general e slightly increased in
Ptprj�/�mice in both LFD and HFD groups. All analyzed sites appeared
affected to a similar extent. Very pronounced was the detection of
increased Akt phosphorylation in skeletal muscle of Ptprj�/� mice at
both sites (Thr308, Ser473) and in both diets (Figure 4AeE) as compared
with liver tissue (Figure 3BeE) and adipose tissue (Figure 5BeE).
These results might point towards a more prominent role of DEP-1 in
glucose metabolism in skeletal muscle. In adipose tissue, significantly
higher phosphorylation levels of Akt at both sites (Thr308, Ser473) were
observed in insulin challenged HFD fed Ptprj�/� mice (Figure 5A, C, E).
Thus, DEP-1 deficiency leads to enhanced insulin signaling shown by
higher Akt phosphorylation.

3.4. Increased glucose uptake in skeletal muscle
The improvement of insulin sensitivity and glucose tolerance, as well
as increased phosphorylation levels of Akt in Ptprj�/� mice, notably in
skeletal muscle, strongly suggested a cell-autonomous role of DEP-1
for negative regulation of insulin signaling. To confirm the presumed
regulatory function, we first assessed insulin-stimulated glucose up-
take in cultured skeletal muscle cells in vitro. DEP-1 depletion in these
cells was performed by siRNA-mediated downregulation. To confirm
the efficiency of DEP-1 depletion we analyzed transcript levels of DEP-
1. We achieved a downregulation of w77%, which was not counter-
regulated by changes in PTP1B and IR transcripts (Figure 6A). Also, the
gene expression of the glucose transporter (GLUT1 and GLUT4) was
unaffected by DEP-1 downregulation (Figure 6A). The incorporation of
[3H]-deoxy-D-glucose was measured, and DEP-1 depleted skeletal
muscle cells stimulated with insulin showed significantly increased
glucose uptake as compared with cells transfected with non-targeting
siRNA (Figure 6B).
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Metabolic phenotyping of wild-type and Ptprj�/� mice. (A) Body weight of mice was determined twice weekly over 8 weeks. (B,C) ITT was performed after 4 h fasting
and the AUC was calculated. (D,E) GTT was conducted after 12 h fasting and corresponding AUC was calculated (n ¼ 8e10 mice per genotype). LFD WT vs. LFD Ptprj KO
*p < 0.05; HFD WT vs. HFD Ptprj KO yp < 0.05. (F) Respiratory exchange ratio determined over 24 h and (G) mean of data recorded every 15 min (n ¼ 6e10 mice per genotype).
LFD WT vs. LFD Ptprj KO *p < 0.05, ***p < 0.001; HFD WT vs. HFD Ptprj KO yp < 0.05, yyyp < 0.001.
We then assessed glucose uptake using isolated soleus muscle for
ex vivo analyses. These experiments revealed that insulin stimulation
in skeletal muscle derived from Ptprj�/� mice resulted in a more
pronounced stimulation of 2-DG uptake as compared with wild-type
tissues (Figure 6C). While in wild-type animals there was only a
trend of increased 2-DG uptake with insulin, this effect became sig-
nificant in the knockout tissues, which was not due to differences in
GLUT1 and GLUT4 gene expression in the soleus muscle between
MOLECULAR METABOLISM 4 (2015) 325e336 � 2015 The Authors. Published by Elsevier GmbH. This is an op
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wild-type and Ptprj�/� mice (data not shown). These findings are
consistent with the improved GTT in Ptprj�/� mice.

3.5. DEP-1 knockout affects serum parameters and blood pressure
In addition to the improved metabolic phenotype, serum parameters
were also analyzed to assess a potential impact of DEP-1 deficiency
(Figure 7AeE). Leptin, shown to be elevated in obesity, was significantly
reduced in Ptprj�/� mice at both LFD and HFD compared to wild-type
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 329
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Figure 3: Insulin signaling in the liver. (A) Tyrosine-phosphorylation levels of different insulin receptor (IR) and Akt phosphorylation sites were analyzed by immunoblotting. (BeE)
Densitometric analyses of Akt phosphorylation at sites Ser473 and Thr308. Quantification was performed with all visualized mouse samples from all individual groups, with n ¼ 3
without insulin challenge and n ¼ 4 with insulin challenge. LFD WT vs. LFD Ptprj KO *p < 0.05; HFD WT vs. HFD Ptprj KO yp < 0.05.
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animals. Serum IL-6 and insulin levels appeared lower in Ptprj�/�mice
under HFD, yet these differences were not statistically significant.
Resistin and MCP-1, adipokines relevant for progression of insulin
resistance, were not affected by DEP-1 knockout, but showed a
characteristic HFD-induced increase. Furthermore, HFD fed Ptprj�/�

mice were characterized by significantly reduced systolic blood
pressure, recorded during the day time, compared to wild-type mice
(Figure 7F).
Interestingly, we detected a significantly reduced beta cell area in the
pancreas of HFD-treated knockout mice compared with wild-type lit-
termates (Figure 7G,H). Such differences between the two genotypes
were not detected in LFD fed mice. Importantly, pancreatic tissue from
mice of both diets in WT and Ptprj�/� animals was not characterized
by altered apoptosis, as revealed by measuring Bax/Bcl2 ratios
(Figure 7I).
Taken together, Ptprj�/� mice appeared to have lower leptin levels,
and deficiency in DEP-1 protected against HFD-induced pancreatic
islet increase, consistent with lower insulin levels and the improved
metabolic phenotype.

4. DISCUSSION

As the main finding of this study, we could establish the trans-
membrane PTP DEP-1/PTPRJ as a novel regulator of insulin resistance
330 MOLECULAR METABOLISM 4 (2015) 325e336 � 2015The Authors. Published by Elsevier GmbH.
in vivo. Ptprj�/� mice subjected to LFD or HFD exhibited an improved
metabolic phenotype, demonstrated by an enhancement in insulin
sensitivity, glucose tolerance, reduced leptin serum levels and an
increased RER. In addition to the systemic effects, DEP-1 deficiency
resulted also in enhanced insulin signaling in liver, skeletal muscle and
adipose tissue. Moreover, we could show that blood pressure in Ptprj�/

� mice fed an HFD was significantly reduced. Experiments with DEP-1
depleted skeletal muscle cells in vitro and soleus muscle from mice
revealed increased glucose uptake.
A large body of evidence has shown that PTPs are substantially
involved in type 2 diabetes and insulin resistance [12,35]. In particular,
the role of PTP1B is well characterized by using different knockout
models [10,13,14] demonstrating PTP1B�/� mice being resistant to
HFD-induced insulin resistance. While the effects of DEP-1 deficiency
observed in our study were clearly milder, overall DEP-1 seems to act
in a manner comparable to PTP1B in this context, revealing some
further redundancy in control of insulin signaling. Interestingly, DEP-1
levels were increased in HFD fed mice [31].
DEP-1 deficiency resulted in significantly enhanced insulin sensitivity.
Basal fastened glucose levels were slightly, but not significantly lower
in Ptprj�/� mice in both diets. While glucose tolerance was also
improved at defined time points, however, this did only translate into a
minor tendency towards lower AUC glucose levels. Effects on glucose
challenge were not observed using antisense oligonucleotides against
This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 4: Insulin signaling in the skeletal muscle. (A) Tyrosine-phosphorylation levels of different IR and Akt phosphorylation sites were analyzed by immunoblotting. (BeE)
Densitometric analyses of Akt phosphorylation at sites Ser473 and Thr308. Quantification was performed with all visualized mouse samples from all individual groups, with n ¼ 3
without insulin challenge and n ¼ 4 with insulin challenge. LFD WT vs. LFD Ptprj KO *p < 0.05, **p < 0.01; HFD WT vs. HFD Ptprj KO yp < 0.05.
DEP-1 [31], which indicates the importance of complete DEP-1 defi-
ciency in additional insulin sensitive tissues to observe this phenotype.
DEP-1 knockout in HFD fed mice resulted only in slightly reduced body
weight. Ptprj�/� mice were characterized by more epididymal fat
mass. This was in contrast to a decrease in body weight and a
concomitant decrease in epididymal fat mass being observed in DEP-1
antisense oligonucleotides treated mice [31]. Counter-regulation of
gene expression induced by complete DEP-1 depletion might be
responsible for the increased epididymal fat mass. Nonetheless,
improved insulin sensitivity is not mandatory associated with body
weight reduction. The lack of impact of DEP-1 deficiency on body
weight is reminiscent of mice with a tissue specific PTP1B depletion in
muscle [36], adipocytes [37], or liver [38]. The latter mice were not
affected in body weight but still showed increased insulin sensitivity.
Further, insulin sensitization by glitazones is accompanied by
increased fat mass caused by fat-redistribution [39,40], which may
also explain decreases in liver weight in HFD fed Ptprj�/- mice.
Metabolic phenotyping performed by LabMaster analysis substantiated
the improved phenotype in Ptprj�/� mice. In general, lower RER in the
animal model used has previously been shown in mice subjected to
HFD, demonstrating higher fat oxidation in combination with reduced
carbohydrate consumption. In addition, RER has been shown to
positively correlate with insulin sensitivity. Indeed, changes in both
body composition and nutrient utilization closely impact on changes of
MOLECULAR METABOLISM 4 (2015) 325e336 � 2015 The Authors. Published by Elsevier GmbH. This is an op
www.molecularmetabolism.com
the RER. In this regard, the observed increase in RER strongly suggests
a direct result of the Ptprj knockout. Further, altered RER was asso-
ciated with a slight, but insignificant increase of motility, whereas food
intake in wild-type and knockout mice was unchanged in the individual
diets. This was also evident when those time periods were sub-
analyzed, where significant differences in RER were detected (12:00
a.m.e03:00 a.m. for LFD fed mice, and 03:00 a.m.e06:00 a.m. for
HFD fed mice). These data underline the significant impact of DEP-1
and diet on energy substrate utilization, possibly due to changes in
insulin signaling, associated with enhanced glucose oxidation.
No clear evidence of general or site-selective hyperphosphorylation in
Ptprj�/� mice was detectable after insulin challenge. On the one hand,
this is in line with the relatively low substrate specificity of DEP-1
in vitro described earlier in Ref. [41]. However, the kinetics by which
PTPs regulate IR and IR-substrate-1 phosphorylation are transient and
depend on the tissues analyzed. Potentially, time points other than
2 min after insulin injection would unravel altered IR phosphorylation in
DEP-1 deficient mice in metabolic tissues. It is, however, likewise
possible that the effect of DEP-1 deficiency mainly affects downstream
events in insulin signaling rather than receptor phosphorylation itself.
Indeed, molecular evidence for the improved insulin resistance was
obtained by increased downstream phosphorylation of Akt at the sites
Ser473 and Thr308. In mice DEP-1 depletion resulted in a significant
increase of insulin-induced Ser473 and Thr308 phosphorylation under
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 331
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HFD in the skeletal muscle and the adipose tissue, while in the liver
only enhanced Ser473 phosphorylation was detectable in knockout
mice (independent of diet). In addition, in LFD fed mice, significantly
enhanced Ser473 and Thr308 phosphorylation was only detected in the
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skeletal muscle, while no differences were evident in adipose tissue,
further suggesting tissue specificity. Even though the highest increase
in Thr308 phosphorylation was seen in adipose tissue, differences
between tissues should be interpreted with great caution, since protein
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This is an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://www.molecularmetabolism.com


0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
ax

/B
cl

2 
ra

tio
 

(r
el

at
iv

e 
m

R
N

A 
le

ve
l)

WT KO
LFD

WT KO
HFD

0

0.5

1.0

1.5

2.0

2.5

be
ta

 c
el

l a
re

a 
(%

 o
f p

an
cr

ea
s)

WT KO
LFD

WT KO
HFD

†H I

G
LFD WT

LFD KO

HFD WT

HFD KO

0

20

40

60

80

100

120
IL

-6
 [p

g/
m

l]

E

0
5

10
15
20
25
30
35
40

R
es

is
tin

 [n
g/

m
l]

0

10

20
30

40
50

60

70

M
C

P-
1 

[p
g/

m
l]

0
5

10

15
20
25

30
35

Le
pt

in
 [n

g/
m

l]

In
su

lin
 [p

m
ol

/l]
B

D

C†

0
105
110
115
120
125
130
135
140
145

sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e 

[m
m

H
g]

†

*

F

0
200
400
600
800

1000
1200
1400
1600

A
0.093

WT KO
LFD

WT KO
HFD

WT KO
LFD

WT KO
HFD

WT KO
LFD

WT KO
HFD

WT KO
LFD

WT KO
HFD

WT KO
LFD

WT KO
HFD

WT KO
LFD

WT KO
HFD

Figure 7: Serum parameters, blood pressure and morphometric pancreatic beta cell- and apoptosis analyses. (AeE) Serum parameters of insulin (n ¼ 7e9 mice per genotype),
leptin (n ¼ 8e9 mice per genotype), resistin (n ¼ 8e9 mice per genotype), MCP-1 (n ¼ 7e9 mice per genotype) and IL-6 (n ¼ 3e6 mice per genotype) were determined by
Milliplex ELISA. (F) Systolic blood pressure was measured non-invasively (n ¼ 8e10 per genotype). LFD WT vs. LFD Ptprj KO *p < 0.05; HFD WT vs. HFD Ptprj KO yp < 0.05. (G)
Representative images of immunostained pancreatic sections showing insulin-positive cells. Scale bars represent 100 mm. (H) Pancreas beta cell area was analyzed morpho-
metrically from LFD- and HFD WT, and LFD- and HFD Ptprj KO mice (n ¼ 8e10 per group). (I) The ratio of Bax/Bcl2 in the pancreas was determined by quantitative real-time PCR
analysis in all animal groups (n ¼ 7e9 mice per genotype), and was normalized to the expression of Rn18s. HFD WT vs. HFD Ptprj KO yp < 0.05.

MOLECULAR METABOLISM 4 (2015) 325e336 � 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

333

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://www.molecularmetabolism.com


Original article
isolation and blotting procedures may slightly vary. Moreover, the
phosphorylation of both sites was suggested to be regulated inde-
pendently [42,43], necessary for full kinase activity, and only in
skeletal muscle an increase in both Ser473 and Thr308 phosphorylation
in Ptprj�/� mice was detected in each diet.
We detected improved insulin resistance in Ptprj�/� mice being
accompanied by reduced leptin levels in both LFD and HFD fed mice.
This is in accordance with antisense oligonucleotide-induced DEP-1
reduction in HFD mice lowering leptin [31]. Elevated in obesity, leptin
may contribute to obesity-associated hypertension and increased heart
rate [44]. Furthermore, interaction of PTP1B, another crucial phos-
phatase in insulin signaling, with leptin signaling in the hypothalamus
has been demonstrated [45,46]. While HFD fed wild-type mice had
only slightly higher blood pressure, HFD fed Ptprj�/� mice were
characterized by significantly reduced blood pressure, possibly driven,
at least partly, by reduced serum leptin levels. In a similar way, also
deletion of PTP1B has been shown to result in blood pressure
reduction, substantiating PTPs crucially impacting on both metabolic
parameters and cardiovascular regulation [47]. Fat mass is considered
to be positively correlated with leptin levels. However, leptin concen-
tration depends on the duration of HFD feeding in rodents and is in-
dependent of fat mass gain [48]. The reduced leptin levels in Ptprj�/�

mice in both diets, however, might suggest a direct role of DEP-1 in
leptin signaling. Blood pressure measurements were performed
during the day time. Thus, potentially different nocturnal/diurnal
regulation as well as a shift in mean arterial blood pressure distribu-
tion, which was demonstrated in obese PTP1B knockout mice [47],
cannot be ruled out.
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downstream signaling molecule Akt at sites Ser473 and Thr308. This ultimately leads to fa
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Insulin resistance is associated with expansion of beta cell mass. In
accordance, HFD wild-type mice were characterized by increased
pancreatic beta cell area, which was not accompanied by altered
apoptosis, compared to lean LFD animals. While we did not measure
insulin secretion during glucose challenge, lower basal insulin levels
were detected in HFD-treated Ptprj�/� mice. This is in line with
significantly reduced cross-sectional beta cell area, further supporting
that DEP-1 deficiency attenuates insulin resistance.
Our results identified a metabolic role of DEP-1 in a conventional
knockout model impacting insulin signaling (depicted in Figure 8) in
lean and obese mice. It should be noted, however, that DEP-1 also
functions as a tumor suppressor described in several cancer cells
[49,50]. Despite this, Ptprj�/� mice used in our study were not
characterized by spontaneous tumor growth or other obvious abnor-
malities, as also described by other investigators [50]. The function of
DEP-1 as a negative regulator in insulin signaling previously shown in
liver tissue [31] was further extended to the glucose utilizing tissues
skeletal muscle and fat. Individual metabolic tissues, including skeletal
muscle, adipose tissue, and liver contribute to the overall observed
metabolic improvement in Ptprj�/� mice, and this phenotype seems
not to be primarily based only on the skeletal muscle. Other factors
may have influenced the demonstrated phenotype, since stronger
metabolic effects could have been expected as a result of the
enhanced insulin signaling in adipose tissue, skeletal muscle, and
liver. The improvement of metabolic parameters in Ptprj�/� mice in-
dependent of the applied diet e with higher effects in obese mice e
suggests that DEP-1 is, at least partly, a direct metabolic regulator.
Together with increased glucose uptake and reduced blood pressure
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after DEP-1 depletion a broad range of cardiovascular-metabolic im-
provements were achieved. Therefore, DEP-1 might be a promising
target for the treatment of insulin resistance as well as metabolic and
cardiovascular disorders.

5. CONCLUSIONS

Insulin resistance represents the main factor for developing type 2
diabetes in obese patients. A better understanding of the underlying
molecular mechanisms of insulin resistance is highly warranted due to
the worldwide increase of type 2 diabetics. A subset of protein tyrosine
phosphatases (PTPs) targets the insulin receptor and impacts on in-
sulin sensitivity and metabolic disease. This study aimed at estab-
lishing the PTP DEP-1 as new negative regulator in insulin signaling.
Taken together, here we report for the first time that a conventional
knockout of DEP-1 results in an improved metabolic phenotype in
mice, characterized in particular by enhanced insulin sensitivity and
insulin signaling. Further, knockdown of DEP-1 in skeletal muscle cells
leads to an increased insulin-induced glucose uptake. Our findings
support the notion of DEP-1 as a novel negative regulator of insulin
signaling, thus representing a potential target for the treatment of
insulin resistance and type 2 diabetes.
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