dc.contributor.author
Eisert, Jens
dc.contributor.author
Mueller, M.P.
dc.contributor.author
Gogolin, Christian
dc.date.accessioned
2018-06-08T03:03:30Z
dc.date.available
2014-02-03T12:34:40.994Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14407
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18601
dc.description.abstract
In this work, we show that very natural, apparently simple problems in quantum
measurement theory can be undecidable even if their classical analogues are
decidable. Undecidability hence appears as a genuine quantum property here.
Formally, an undecidable problem is a decision problem for which one cannot
construct a single algorithm that will always provide a correct answer in
finite time. The problem we consider is to determine whether sequentially used
identical Stern-Gerlach-type measurement devices, giving rise to a tree of
possible outcomes, have outcomes that never occur. Finally, we point out
implications for measurement-based quantum computing and studies of quantum
many-body models and suggest that a plethora of problems may indeed be
undecidable.
de
dc.rights.uri
http://publish.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Quantum measurement occurrence is undecidable
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 108 (2012), 26, S.S. 260501/1-5
dc.identifier.sepid
24734
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.108.260501
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.108.260501
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000019538
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000002979
dcterms.accessRights.openaire
open access