
Quantum measurement occurrence is undecidable

J. Eisert,1 M. P. Müller,2 and C. Gogolin1

1Qmio Group, Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Received 7 February 2012; published 25 June 2012)

In this work, we show that very natural, apparently simple problems in quantum measurement theory

can be undecidable even if their classical analogues are decidable. Undecidability hence appears as a

genuine quantum property here. Formally, an undecidable problem is a decision problem for which one

cannot construct a single algorithm that will always provide a correct answer in finite time. The problem

we consider is to determine whether sequentially used identical Stern-Gerlach-type measurement devices,

giving rise to a tree of possible outcomes, have outcomes that never occur. Finally, we point out

implications for measurement-based quantum computing and studies of quantum many-body models

and suggest that a plethora of problems may indeed be undecidable.
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At the heart of the field of quantum information theory is
the insight that the computational complexity of similar
tasks in quantum and classical settings may be crucially
different. Here we present an extreme example of this
phenomenon: an operationally defined problem that is
undecidable in the quantum setting but decidable in an
even slightly more general classical analog. While the
early focus in the field was on the assessment of tasks of
quantum information processing, it has become increas-
ingly clear that studies in computational complexity are
also very fruitful when approaching problems outside the
realm of actual information processing, for example, in the
field of Hamiltonian complexity [1–5], or dynamical prob-
lems in channel theory [6]. In the meantime, a plethora of
computationally hard tasks has been identified, both as far
as NP-hard problems are concerned as well as their ‘‘quan-
tum analogues,’’ the QMA (quantum Merlin-Arthur)-hard
ones. These results show that it is presumably difficult to
find an answer to those problems, but with sufficient com-
putational effort, it can still be done.

Surprisingly, as will become clear, very natural decision
problems in quantum theory may not only be computation-
ally hard, but in fact even provably undecidable [7,8], i.e.,
there cannot be an algorithm, or for that matter a standard
Turing machine, that always provides the correct answer in
finite time. As such, this class of problems is in the same
category as the halting problem that was famously shown
to be undecidable in Alan Turing’s work from 1936 [9].
The problem is to determine, given some program and an
input, whether this program will eventually come to an end
with that input—so will ‘‘halt’’—or whether the program
will continue running forever. The key insight of Alan
Turing was to recognize that there cannot be a single
algorithm that is able to correctly answer every instance
of that problem. Of course, one can execute any algorithm
for any finite time, but in case the program has then still
not halted, one cannot judge in general whether or not it

will ever do so. This seminal insight has had profound
implications in the theory of computing and in fact even
to mathematics: It implies Gödel’s first incompleteness
theorem [10], which states that a consistent, complete,
and sound axiomatization of all statements about natural
numbers cannot be achieved.
In this work, we demonstrate that the very natural physi-

cal problem of determining whether certain outcome se-
quences cannot occur in repeated quantum measurements
is undecidable, even though the same problem for classical
measurements is readily decidable. We do so by employing
a reduction: We show that if the problem that we introduce
could always be solved, then one could find an algorithm
that solved every instance of the halting problem—which
cannot be true. At the same time we prove that the arguably
most general classical analogue of the problem is always
decidable, which shows that the undecidability is remark-
ably a genuine quantum mechanical feature.
We also suggest that it is reasonable to expect a number

of further such results, in particular, in the context of
quantum information and quantum many-body theory.
Setting.—The decision problem that we will prove un-

decidable is motivated by the following natural quantum

FIG. 1 (color online). The setting of sequential application of
Stern-Gerlach-type devices considered here gives rise to a tree of
possible outcomes. The problem is to decide whether there exists
an empty port through which the particle will never fly.
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measurement setting: Consider a measurement device that
selectively measures a d-dimensional quantum system and
has K possible outcomes. Such a device is a generalization
of a Stern-Gerlach type device that performs a nonprojec-
tive measurement. The K outcomes of the device are
associated with Kraus operators A1; . . . ; AK. A measure-
ment leading to outcome j 2 f1; . . . ; Kg occurs with proba-
bility trðAj�A

y
j Þ and changes the state of the system

according to

� �
Aj�A

y
j

trðAj�A
y
j Þ
: (1)

In a sequence of nmeasurements, the output state of such a
device is repeatedly fed into an identical measurement
device, leading to a tree of measurements (see Fig. 1).
Each path through this tree is associated with a sequence
of outcomes j1; . . . ; jn. In order to have a meaningful
decision problem, where each input can be described by
finitely many bits, we restrict the problem to measurements
whose Kraus operators are matrices of rational numbers:

Definition.—(Quantum measurement occurrence prob-
lem(QMOP)] Given a description of a quantum mea-
surement device in terms of K Kraus operators
fA1; . . . ; AKg � Qd�d, the task is to decide whether, in
the setting described above, there exists any finite sequence
of outcomes j1; . . . ; jn that can never be observed, even if
the input state has full rank.

Note that the notion of undecidability itself is indepen-
dent of the physical theory: if a problem is undecidable for
classical Turing machines, then it is also undecidable for
quantum Turing machines, and vice versa since they can
mutually simulate each other. Thus, our result says that the
QMOP cannot be decided, no matter what physical resour-
ces we use to try to come to a decision.

Furthermore, note that in the QMOP one is supplied a
perfect classical description of the quantum measurement
device, and there is no ‘‘quantum uncertainty’’ in the
description itself. Yet, we will see below that desctructive
interference in the working of the quantum device, as
encoded in the Kraus operators, renders the quantum mea-
surement occurrence problem undecidable, in contrast to
its classical counterpart.

Undecidability of the quantum problem.—Figuratively
speaking in the metaphor of the Stern-Gerlach device with
its tree of outcomes, the problem is to decide whether there
exists an empty port somewhere in the tree through which
the particle will never fly. Surprisingly this turns out to be
undecidable:

Theorem 1.—(Undecidability of the quantum problem).
The QMOP for K ¼ 9 and d ¼ 15 is undecidable.

This statement is a consequence of the undecidability of
the so-called matrix mortality problem (MMP): Given
some finite set of integer matrices fM1; . . . ;Mkg, is there
any finite matrix product Mj1 . . .Mjn that equals the zero

matrix? In other words, does the semigroup generated by
fM1; . . . ;Mkg contain the zero matrix? As we sketch in the
supplementary material [11], one can show that the MMP
is undecidable by reducing it to the so-called post corre-
spondence problem [12,13]. More specifically:
Theorem 2.—(Undecidability of the MMP [15,16]) The

MMP is undecidable for 3� 3 integer matrix semigroups
generated by 8 matrices.
That is to say, there cannot be an algorithm that takes the

input fM1; . . . ;M8g � Z3�3 and computes in finite time
whether or not there exists a sequence j1; . . . ; jn such that

Mj1 . . .Mjn ¼ 0: (2)

In fact, in a variant of the argument, the above theorem is
still valid for semigroups generated by 7 integer 3� 3
matrices [17]. Whether the MMP is also undecidable in
the case of 2� 2 matrices is still an open problem [18].
Turning back to the quantum problem, in terms of the

Kraus operators, the probability for obtaining a particular
sequence j ¼ j1; . . . ; jn of outcomes ji 2 f1; . . . ; Kg is

pj ¼ trðAjn . . .Aj1�A
y
j1
. . .Ay

jn
Þ: (3)

Now trðAy
j1
. . .Ay

jn
Ajn . . .Aj1�Þ ¼ 0 for a full rank quantum

state � if and only if Ay
j1
. . .Ay

jn
Ajn . . .Aj1 ¼ 0. Since this is

a positive operator, the latter equality is true if and only
if all of its singular values are zero, i.e., if and only if
Ajn . . .Aj1 ¼ 0.

Now we relate an instance of a MMP to a set of suitable
Kraus operators fA1; . . . ; A9g � Q15�15. Our approach is to
take an instance of the MMP, to encode it in Kraus opera-
tors having rational entries, and to complete them such that
they form a trace-preserving completely positive map. The
key point of the argument is that although we extend the
dimension of the Kraus operators, a zero matrix is still
found in the product of Kraus operators exactly if and only
if the corresponding MMP contains a zero matrix in the
semigroup. A slight detour in the argument is necessary as
we wish to arrive at Kraus operators with rational entries.
For a given instance fM1; . . . ;M8g � Z3�3 of the MMP,

define

T :¼ X8
j¼1

My
j Mj: (4)

Using the three integer matrices P1 :¼ diagð�1; 1; 1Þ,
P2 :¼ diagð1;�1; 1Þ, P3 :¼ diagð1; 1;�1Þ, and for j 2
f1; . . . ; 8g set

M8þj :¼ MjP1; (5)

M16þj :¼ MjP2; (6)

M24þj :¼ MjP3: (7)

This gives
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X32
j¼1

My
j Mj ¼ 4 diagðT1;1; T2;2; T3;3Þ: (8)

Define c 2 N as

c :¼ d2ðmaxfT1;1; T2;2; T3;3gÞ1=2e: (9)

By virtue of Lagrange’s four-square theorem [19], every
natural number can be written as the sum of four integer
squares. Hence, there exist four diagonal matrices
M33; . . . ;M36 such that

X36
j¼1

My
j Mj ¼ c213: (10)

We now set for j ¼ 1; . . . ; 8,

Aj :¼ 4

5c

Mj

M8þj

M16þj 015�12

M24þj

M32þj

2
666664

3
777775 (11)

with M37; . . . ;M40 :¼ 03 and

A9 :¼
�
3

5
13

�
� 112: (12)

The matrices fA1; . . . ; A9g � Q15�15 satisfy
P9

j¼1 A
y
j Aj ¼

115, as a simple calculation shows, and thus describe a
quantum measurement device.

We are now in the position to reduce the quantum
measurement occurrence problem to the problem of decid-
ing whether the given semigroup contains the zero matrix.
If this is the case, i.e., if there exists a sequence j for which
Mjn . . .Mj1 ¼ 0, j1; . . . ; jn 2 f1; . . . ; 8g, then Ajn . . .Aj1

has the zero matrix as its upper-left 3� 3 block.
Moreover, the whole upper triangular matrix (including
the diagonal) is zero as well, which means that the matrix
is nilpotent: there is some m � 15 such that

ðAjn . . .Aj1Þm ¼ 0: (13)

Conversely, let us assume that there exists an outcome
sequence that is never observed, so there exists a sequence
j such that Ajn . . .Aj1 ¼ 0. Let � be the sequence that is

obtained from j by omitting all ji for which ji ¼ 9. Then,
by construction, Mvjvj . . .Mv1

¼ 0. Therefore, the semi-

group generated by fM1; . . . ;M8g contains the zero matrix.
The QMOP as described so far asks whether certain

outcome sequences have probability exactly equal to
zero. From a physical point of view, it is interesting to
note that this result is to some extent robust, in the sense
that it remains valid if small nonzero probabilities are
allowed. To see this, write every Kraus operator in the
form Aj ¼ Zj=Nj, where Nj 2 N and Zj 2 Zd�d. Then

the probability of the sequence j from Eq. (3) becomes

pj¼ðNj1 ...NjnÞ�2trð�ZÞ�1

d
N�ntrðZÞ�ðdNÞ�ntrðZÞ; (14)

where Z 2 Zd�d fulfils Z � 0 and N :¼ maxjN
2
j 2 N.

Thus, pj is either exactly zero or not less than �n, where

� :¼ 1=ðdNÞ is a function of the Kraus operators.
Therefore, the QMOP is equivalent to the following prob-
lem: Given K Kraus operators fA1; . . . ; AKg � Qd�d, is
there a finite sequence of outcomes j1; . . . ; jn that has
probability less than �n (with � > 0 defined above) if the
input is the maximally mixed state?
Decidability of the classical problem.—We now turn to a

corresponding classical problem, the classical measure-
ment occurrence problem (CMOP). A classical channel
is described by a stochastic matrix Q acting on
d-dimensional probability vectors ~q. A description of a
classical selective measurement device with K outcomes
is given by a decomposition Q ¼ P

K
j¼1 Qj into matrices

Q1; . . . ; QK with non-negative entries (such matrices are
sometimes called substochastic) that specify the action of
the device on the classical system. That is, on outcome j
the probability vector is transformed according to

~q �
Qj ~qPd

i¼1ðQj ~qÞi
: (15)

This is arguably the most general classical analog of the
QMOP. The probability for obtaining a particular sequence
j1; . . . ; jn of outcomes ji 2 f1; . . . ; Kg on an input proba-
bility vector ~q is

Pd
i¼1ðQjn . . .Qj1

~qÞi. This is zero for an

input vector ~q with all ð ~qÞi >0 if and only ifQjn . . .Qj1 ¼0.

The CMOP is thus obviously equivalent to the MMP with
entrywise non-negative matrices. For this case
the MMP is decidable, which was shown in Ref. [20] for
K ¼ 2, and the general case follows by an essentially
equivalent argument.
It shall be noted that our definition of classical devices is

even more general than that of the quantum devices con-
sidered before; it represents the most general form of any
conceivable classical measurement device. Namely, we
allow for mixing in each outcome, which would in the
quantum case correspond to a device that applies a whole
quantum channel, not just a single Kraus operator, per
outcome.
We now turn to proving decidability of the MMP with

elementwise non-negative Kraus operators from which
decidability of the classical case and for a subclass of
quantum measurement devices follows.
Theorem 3.—(Decidability of the non-negative MMP).

The MMP is decidable for any d� d matrix semigroup
generated byK matrices with non-negative rational entries.
Although the MMP is decidable for matrices with non-

negative entries, it is still a hard problem: even in the case
of K ¼ 2 matrices, this problem is NP complete [20].
Corollary 4.—(Decidability of the classical problem).

For any K and d, both the QMOP with Kraus operators
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fA1; . . . ; AKg � Qþd�d
0 with non-negative entries and the

CMOP are decidable.
In order to prove Theorem 3 we introduce some notation

first. For an elementwise non-negative matrixM we define
the matrix M0 elementwise by

M0
a;b

:¼
(
0 if Ma;b ¼ 0

1 if Ma;b > 0:
(16)

For two such binary matrices M0, N0 we define their
associative binary matrix product by M0 � N0 :¼ ðM0N0Þ0.
Note thatMj1 . . .Mjn ¼ 0 if and only if ðMj1 . . .MjnÞ0 ¼ 0,

which in turn holds if and only if

M0
j1
� . . . �M0

jn
¼ 0: (17)

All matrices in the semigroup S generated by S ¼
fM0

1; . . . ;M
0
Kg under the matrix multiplication � are binary

matrices, hence jSj � 2ðd2Þ. We finish the proof by arguing
that every element M0 of S can be written in terms of at
most jSj elements from S. Fix some M0 and let j1; . . . ; jm
be the shortest sequence of indices such that M0 ¼ M0

jm
�

. . . �M0
j1
. Then for all k < l � m we have M0

jl
� . . . �

M0
j1
� M0

jk
� . . . �M0

j1
, because otherwise we would obtain

a shorter representation of M by replacing the former
product with the latter. Therefore, for each l � m the
product M0

jl
� . . . �M0

j1
yields a different element of S

and hence m � jSj � 2ðd2Þ.
Outlook and implications for quantum many-body prob-

lems.—We have seen in this work that very natural decision
problems in quantum measurement theory can be undecid-
able, even if their classical counterparts are decidable. In
the specific problem that we considered (quantum mea-
surement occurrence problem), the existence of negative
transition matrix elements renders the quantum problem
more complex than its classical counterpart—that is, the
effect of destructive interference. We conclude by a num-
ber of further comments:

First, note that mild variants of the above problem can
easily lead to problems that have efficient solutions. For
example, if one considers trace-preserving quantum chan-
nels, one can give upper bounds to the number of times a
channel must be applied, so that it maps any density
operator to one with full rank, by virtue of the quantum
Wielandt theorem [21]. Thus, the problem whether there is
some n such that the n-fold application of a nonselective
channel yields nonzero probabilities, for all subsequent
measurements and for all inputs, is efficiently decidable.

Second, the above statement has immediate implications
to undecidability in quantum many-body physics [22] and
quantum computing. Interpreting the above matrices
fA1; . . . ; AKg as those defining matrix-product states
[5,23,24], several other natural undecidable problems
open up.

As an example, consider a family of one-dimensional
quantumwires formeasurement-based quantum computing

in the sense of Refs. [23]. These wires are described by
families of matrix-product states of length n, being defined
by products of matrices fA1; . . . ; AKg (the same set of ma-
trices is taken for each site), associated with measurement
outcomes 1; . . . ; K in the computational basis. The left and
right boundary conditions are fixed as jLi ¼ jRi ¼
½10 . . . 0�T . The task is to determine whether there exists a
sequence of measurement outcomes j1; . . . ; jn that will
never occur [25]. The subsequent result is a consequence
of the above reasoning, together with the fact that the
problem whether the semigroup generated by integer ma-
trices contains a matrix with a zero element in the left upper
corner is undecidable [17].
Theorem 5.—(Undecidability in quantum computing).

Given a description of a family of matrix-product states
defined by the matrices fA1; . . . ; AKg � Qd�d, the task is to
decide whether there exists an n and a sequence of out-
comes j1; . . . ; jn for a wire of length n of local measure-
ments in the computational basis that will never be
observed. This problem is undecidable.
Similar reasoning as in the proof of the undecidability of

the quantum measurement occurrence problem suggests
that other questions concerning the characterization of
measurement outcomes are undecidable as well. These
observations indicate that undecidability may be a natural
and frequent phenomenon in many-body quantum physics
and computation.
Similarly interestingly, a number of problems in quan-

tum information theory seem to be natural candidates for
being potentially undecidable. This applies notably to the
problem of deciding whether a quantum state is distillable,
giving a new perspective to the notorious question of
deciding whether bound entangled states with a negative
partial transposition exist.
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