We study thermal transport at low temperatures in the disordered Fermi liquid with short-range interactions. Gravitational potentials are used as sources for finding the heat density and its correlation function. For a comprehensive study, we extend the renormalization group (RG) analysis developed for electric transport by including the gravitational potentials into the RG scheme. Our analysis reveals that the Wiedemann-Franz law remains valid even in the presence of quantum corrections caused by the interplay of diffusion modes and the electron-electron interaction. In the present scheme this fundamental relation is closely connected with a fixed point in the multiparametric RG flow of the gravitational potentials.