dc.contributor.author
Agarwal, Animesh
dc.contributor.author
Zhu, Jinglong
dc.contributor.author
Hartmann, Carsten
dc.contributor.author
Wang, Han
dc.contributor.author
Site, Luigi Delle
dc.date.accessioned
2018-06-08T02:54:55Z
dc.date.available
2015-11-27T07:05:50.653Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/14122
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-18319
dc.description.abstract
This article deals with the molecular dynamics simulation of open systems that
can exchange energy and matter with a reservoir; the physics of the reservoir
and its interactions with the system are described by the model introduced by
Bergmann and Lebowitz (P G Bergmann and J L Lebowitz 1955 Phys. Rev. 99 578).
Despite its conceptual appeal, the model did not gain popularity in the field
of molecular simulation and, as a consequence, did not play a role in the
development of open system molecular simulation techniques, even though it can
provide the conceptual legitimation of simulation techniques that mimic open
systems. We shall demonstrate that the model can serve as a tool in devising
both numerical procedures and conceptual definitions of physical quantities
that cannot be defined in a straightforward way by systems with a fixed number
of molecules. In particular, we discuss the utility of the Bergmann–Lebowitz
(BL) model for the calculation of equilibrium time correlation functions
within the grand canonical adaptive resolution method (GC-AdResS) and report
numerical results for the case of liquid water.
en
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
grand canonical
dc.subject
Bergmann – Lebowitz Liouville equation
dc.subject
adaptive resolution
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik
dc.title
Molecular dynamics in a grand ensemble
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
New Journal of Physics. - 17 (2015), 8, Artikel Nr. 083042
dc.title.subtitle
Bergmann–Lebowitz model and adaptive resolution simulation
dcterms.bibliographicCitation.doi
10.1088/1367-2630/17/8/083042
dcterms.bibliographicCitation.url
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083042/meta
refubium.affiliation
Mathematik und Informatik
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000023270
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000005513
dcterms.accessRights.openaire
open access