dc.contributor.author
Saghabalyan, Davit
dc.date.accessioned
2018-06-07T23:03:13Z
dc.date.available
2013-01-18T11:49:51.016Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/9989
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14187
dc.description.abstract
Die Aortenklappenstenose ist heutzutage das häufigste therapiebedürftige
Herzklappenvitium bei erwachsenen Patienten in den industrialisierten Ländern.
Die verkalkte trikuspide Aortenklappenstenose betrifft dabei vor allem ältere
Patienten. Der perkutane Aortenklappenersatz (TAVI) ist ein neuer
therapeutischer Ansatz für die Behandlung einer hochgradigen
Aortenklappenstenose bei multimorbiden oder alten Patienten mit hohem OP-
Risiko. Derzeit sind zwei bioprothetische Aortenklappen für die
kathetergestützte Aortenklappenimplantation verfügbar: Die Edwards-Sapien-
Prothese (Rinderperikardklappe) und die selbstexpandierende CoreValve-Prothese
(Schweineperikardklappe). Mit der zunehmenden Anzahl durchgeführter TAVI
besteht die Notwendigkeit der echokardiographischen Nachbeobachtung und
Beurteilung dieser neuen Klasse von bioprothetischen Klappen. Die Doppler-
Echokardiographie ist dabei die Methode der Wahl bei der Untersuchung der
Patienten mit prothetischen Herzklappen. Die bisher veröffentlichten TAVI-
Studien, die Doppler-Daten präsentierten, bezogen sich nicht auf Klappengröße
und Klappenart, darüberhinaus wurden auch Patienten mit peri-prozeduralen
Komplikationen eingeschlossen, was einen wichtigen Unterschied zu unserer
Studie darstellt. Unsere Studie konnte Doppler-Normwerte sowie die effektive
Öffnungsfläche für die bioprothetischen perkutanen Aortenklappenprothesen vom
Typ Edwards Sapien und CoreValve etablieren. Dies wird zukünftig erlauben,
diese neue Art von Bioprothesen nach der Implantation besser zu beurteilen.
Wir haben die früheste Echokardiographie (median 8 ± 20 Tagen) von 110
klinisch stabilen Patienten nach perkutanem Aortenklappenersatz ausgewertet.
Es wurden die maximalen und mittleren Druckgradienten sowie die maximale
systolische Geschwindigkeit ermittelt. Die effektive Öffnungsfläche wurde
anhand der Kontinuitätsgleichung berechnet. Des weiteren wurden die
linksventrikuläre Ejektionsfraktion und das Schlagvolumen bestimmt. In den
meisten Publikationen über die Normwerte für chirurgische Klappenprothesen
hingegen fehlen diese Werte. Patienten mit postinterventionellen hochgradigen
Aortenklappen- oder Mitralklappenregurgitationen waren ein
Ausschlusskriterium. Die mittlere LVEF betrug 53.5 ± 11.7% und das
Schlagvolumen 73.9 ± 21.4 ml. Die maximale systolische Geschwindigkeit über
der Klappenprothese für alle Klappenprothesen war 2.0 ± 0.4 m/s (1.0-3.4 m/s).
Der maximale (peak) Druckgradient betrug 16.9 ± 7.2 mmHg (4-46 mmHg), der
mittlere Gradient 9.2 ± 4.2 mmHg (3-26 mmHg). Die mittlere
Aortenöffnungsfläche war 1.84 ± 0.42 cm2 (1.1-3.4 cm2) mit einer AVAIndex von
1.0 ± 0.3 cm2/m2 (0.5-2.0 cm2). Der mittlere Doppler velocity index (DVI)
betrug 0.54 ± 0.13 (0.2-0.8). Die multivariate Analyse zeigte, dass es nur bei
den CoreValve 26 mm Prothesen, verglichen mit Edwards Sapien 23 mm eine
signifikant niedrigere peak velocity (1.9 ± 0.4 vs. 2.3 ± 0.4; p = 0.03)
vorliegt. Auch der maximale Gradient (15.3 ± 6.4 vs. 22.6 ± 6.6; p = 0.02),
und der mittlere Gradient (8.4 ± 3.9 vs. 12.4 ±3.8; p = 0.03) waren bei
CoreValve 26 mm Prothesen signifikant niedriger. Darüber hinaus konnte
nachgewiesen werden, dass CoreValve 29 mm Prothesen eine signifikant größere
effektive Öffnungsfläche haben als Edwards Sapien 23 mm Prothesen (1.81 ± 0.37
cm2 vs. 1.50 ± 0.08 cm2; p = 0.03). Werden aber die indizierten
Öffnungsflächen verglichen, konnten keine signifikanten Unterschiede zwischen
den untersuchten Klappenarten gefunden werden. 20,9% unserer Patienten wiesen
nach TAVI eine signifikante AI auf. Diese waren meistens paravalvuläre,
halbmondförmige Regurgitationen. Hier besteht in der Literatur kein Konsens
über die exakte Quantifizierung mittels 2D-Echokardiografie. Verglichen mit
publizierten hämodynamischen Daten chirurgisch implantierter
Aortenklappenprothesen, zeigen die perkutan implantierten
Aortenklappenprothesen vergleichbare effektive Klappenöffnungsflächen, aber
niedrigere maximale Geschwindigkeiten und Druckgradienten.
de
dc.description.abstract
Percutaneous valve implantation is an evolving new approach for the over 30%
of all symptomatic patients with severe aortic stenosis who cannot undergo
surgical treatment due to relevant comorbiditie. As the non-inferiority of
TAVI compared with surgical treatment was recently shown percutaneous
treatment of severe aortic stenosis will likely become a standard method.
Therefore and due to increasing experience with this technique the number of
implantations will rise and the need for non-invasive evaluation will become
even more necessary than it is already today. While assessment of symptomatic
patients after valve repair should always start with physical examination,
differentiation of symptoms caused by prosthetic valve dysfunction and other
conditions needs specific diagnostic tools. Echocardiography and Doppler
assessment are the method of choice also in patients after TAVI and,
therefore, normal Doppler values have to be established. The present study
determines the normal range for Doppler hemodynamics and EOA of two types of
percutaneously implanted bioprosthetic valves (i.e. Edwards SAPIEN and
CoreValve) after successful TAVI. As mild paravalvular regurgitation is
common, especially in patients with CoreValve prostheses, only patients with
severe aortic (or mitral) regurgitation were excluded due to alteration of
forward-flow hemodynamics. In our experience the classification of
paravalvular regurgitation is even more challenging in percutaneous valves
than in conventional surgically implanted prostheses since the regurgitation
jet is often eccentric and crescent-shaped. Moreover, measurement of the vena
contracta is frequently not feasible. One limitation of our study is the fact
that transesophageal echocardiography (TEE) was not routinely performed after
TAVI. This modality shows higher sensitivity in AR evaluation than
transthoracic echocardiographic studies in patients with a poor acoustic
window and may help to identify posterior paravalvular leaks. In patients with
treated severe aortic stenosis, the rate of deceleration of the diastolic
regurgitant jet and the derived pressure half-time are not helpful in
evaluation of AR since they are more depending on the LV compliance and
pressure then on the AR itself. As recommended we used an integrative approach
with an emphasis on the flow profile in the thoracic and abdominal aorta since
a holodiastolic flow reversal in the descending thoracic aorta indicates an at
least moderate AR. The strength of the presented data are the additionally
considered hemodynamic parameters like LVEF and SV since their consideration
is required for an adequate interpretation of Doppler data due to the flow
dependence. In most of the published literature about normal values for
Doppler gradients this crucial information is missing. However, a preserved
LVEF does not rule out impaired systolic function and a paradoxical low flow
situation resulting in low gradients. In consequence, the SV has a greater
significance for the flow profile than LVEF alone. Importantly, our study
population has normal mean flow hemodynamics with a mean SV of over 70 ml and
a SVI of 40 ml/m2. In case of treating patients with low flow hemodynamic
situation, our normal values have to be used with caution but the EOA and the
DVI should still be valid. In patients with aortic prostheses and narrow LV
outflow due to LV hypertrophy, the velocity proximal to the prosthesis may be
elevated and should be included in the Bernoulli equation to derive the
pressure gradients more accurately. But there is still a good correlation
between pressure gradients derived from the simplified Bernoulli equation and
hemodynamically measured gradients. The present publication was neither
designed as a comparison between the different available percutaneous aortic
valves nor between other surgically implanted aortic prostheses. Rather, it
describes the hemodynamic performances of the Edwards Sapien and the CoreValve
transcatheter aortic valves in a large cohort of patients. We performed only
non-invasive evaluation of the different valves and no corresponding
invasively measured hemodynamic values were obtained. Yet, a good correlation
between continuous wave Doppler data and catheter-based hemodynamics has been
shown for prostheses in the aortic position and routinely follow-up
examinations will be performed non-invasively for the majority of the
patients. Although our four patient groups are not matched, there were no
significant differences regarding LVEF, heart rate and SV between the
different valves. CoreValve 26 mm prostheses were found to have significantly
lower mean peak velocities as well as lower peak and average mean gradients.
Furthermore, the CoreValve 29 mm prosthesis had, on average, a significantly
greater EOA compared to the Edwards Sapien 23 mm. These findings are
consistent with previous studies on aortic prostheses which reported an
inverse correlation between valve size and flow velocities. Although the
CoreValve 26 mm had the greatest orifice area indexed to the patient’s body
surface area no significant difference could be found compared with the other
valve types. To describe the function of prosthesis using the indexed EOA is
more reasonable since it better reflects the combination of valve function and
condition of each patient present. The EOA has to be proportionate to the
patient’s body size to keep the hemodynamic parameters low. Hence, the indexed
orifice area was shown to be the only parameter with impact on the clinical
outcome. Taken together, no percutaneous valve can be considered superior
regarding to hemodynamic function. Therefore, the decision, which valve to
implant should be driven by the aortic annulus diameter and the optimal
interventional access for each patient. In comparison to previously published
hemodynamic data of mostly stented surgically implanted bioprosthetic aortic
valves the percutaneous valves tend to have lower mean peak velocities and
pressure gradients. Even the normal values of some stentless valves seem
higher than the tested percutaneous valves. The EOA is similar compared with
previously published data of surgically implanted stented bioprosthetic aortic
valves. It is not possible to compare the indexed EOA since this parameter is
generally not given in the available literature. Our results appear all the
more surprising because the diseased and often severely calcific leaflets of
the native valve are only crushed against the supporting valvular sinuses
during the valvuloplasty and the following valve implantation and are not
surgically resected. Accordingly, recoil could be expected leading to
reduction of the orifice area and an increase of the transvalvular pressure
gradients. The frequent paravalvular regurgitation could enhance the
hemodynamic effects additionally. Since the vast majority of index
echocardiographic examinations took place in the first month, no information
is available about mid-term alterations. However, in a subgroup analysis, no
significant differences regarding the EOA and the indexed EOA in patients
examined more than one month after TAVI could be detected. Importantly, since
our study did not include patients after conventional therapy our comparison
with surgically implanted valves is only based on previously published data.
In conclusion, Doppler echocardiography is the preferred non-invasive modality
for the follow-up evaluation of prosthetic valve function. This study
establishes normal Doppler values for Edwards Sapien and CoreValve
transcatheter aortic valves but the comparison with the individual baseline
values should be considered if feasible.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
aortic stenosis
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Doppler-Normwerte der biologischen Aortenklappenprothesen von Edwards SAPIEN
und CoreValve nach perkutanem Aortenklappenersatz
dc.contributor.contact
saghabalyan@gmail.com
dc.contributor.firstReferee
Priv.-Doz. Dr. med. F. Knebel
dc.contributor.furtherReferee
Prof. Dr. med. H. Theres
dc.contributor.furtherReferee
Prof. Dr. med. H. Völler
dc.date.accepted
2013-02-01
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000039604-4
dc.title.translated
Doppler hemodynamics and effective orifice areas of Edwards SAPIEN and
CoreValve transcatheter aortic valves after TAVI
en
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDISS_thesis_000000039604
refubium.mycore.derivateId
FUDISS_derivate_000000012508
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access