dc.contributor.author
Hormann, Jan
dc.date.accessioned
2018-06-07T22:01:09Z
dc.date.available
2016-04-29T08:59:59.329Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/8757
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-12956
dc.description.abstract
Krebserkrankungen sind weltweit die zweithäufigste Todesursache. Während sie
durch Mutationen der DNA ausgelöst werden, kann die gezielte Veränderung oder
Zerstörung von DNA dazu führen, dass die Krebszelle abstirbt. So wurden
Krebserkrankungen seit 1978 unter anderem sehr erfolgreich mit DNA-bindenden
Medikamenten wie Cisplatin behandelt. Immer häufiger auftretende Resistenzen
und Nebenwirkungen altgedienter Krebsmedikamente verlangen die Entwicklung
neuer Wirkstoffe. Kandidaten für neue Medikamente gegen Krebs sind künstliche
Nukleasen, die reaktive Sauerstoffspezies generieren und DNA oxidativ spalten
können. Im Rahmen der vorliegenden Arbeit wurden zwei Strategien genutzt, um
ausgehend vom Kupfer(II)cyclen-Komplex neue effektive Metallonukleasen
herzustellen. Zunächst wurde untersucht, inwiefern der sukzessive
Heteroatomaustausch der Cyclenstickstoffatome die Nukleaseaktivität des
Komplexes beeinflusst. Es wurden zehn verschiedene makrozyklische
Kupfer(II)-Komplexe mit [NAXB]-Donorsystem dargestellt, bei denen vom
Kupfer(II)cyclen-Komplex (A = 4; B = 0) bis hin zum kompletten
Sauerstoffanalogon (X = O; A = 0; B = 4) und Schwefelanalogon (X = S; A = 0; B
= 4) alle Komplexe charakterisiert und über Agarose-Gelelektrophorese auf ihre
Nukleaseaktivität hin untersucht wurden. Die Untersuchung der
Sauerstoffanaloga des Cyclens brachte hervor, dass die Nukleaseaktivität
gegenüber dem Kupfer(II)cyclen-Komplex erhöht ist und vom Sauerstoffanteil und
der Komplexgeometrie abhängt. Durch elektrochemische Untersuchungen konnte der
Grund für dieses Verhalten festgestellt werden: Keiner der Kupfer(II
)oxacyclen-Komplexe zeigte eine elektrochemisch reversible Reduktion, vielmehr
führt die Reduktion zur Freisetzung von Kupfer(I). Es wird vermutet, dass
dieses „freie Kupfer“ zur DNA-Spaltung beiträgt. Im Gegensatz dazu bilden die
Schwelfelanaloga sowohl stabile Kupfer(II)- als auch Kupfer(I)-Komplexe. Sie
können elektrochemisch reversibel reduziert werden und weisen im Vergleich mit
der Ausgangsverbindung Kupfer(II)cyclen eine verbesserte DNA-Spaltaktivität
auf. Die DNA-Affinität des Kupfer(II)cyclen-Komplexes und seine photochemische
und oxidative DNA-Spaltaktivität konnte zudem durch die Substitution mit der
DNA-Targetingfunktion Anthrachinon erhöht werden. Hierbei konnte durch die
Untersuchung von Komplexen mit verschiedenen Linkerlängen zwischen
Cyclenkomplex und Anthrachinongruppe gezeigt werden, dass die Substitution mit
der Targetinggruppe die DNA-Spaltaktivität erhöht, jedoch keine direkte
Korrelation zwischen DNA-Affinität und DNA-Spaltaktivität besteht. So führt
die Substitution mit mehreren Anthrachinongruppen zum Beispiel zu einer
Erhöhung der DNA-Affinität, jedoch konnte über Rasterkraftmikroskopie gezeigt
werden, dass anstatt einer erhöhten DNA-Spaltaktivität die Vernetzung
verschiedener DNA-Stränge erreicht wird. Die mit der DNA-Vernetzung
einhergehende Veränderung der DNA-Struktur führt zusätzlich dazu, dass einige
der mehrfachsubstituierten Anthrachinonkomplexe die DNA-Synthese bereits in
nM-Konzentrationen zum Erliegen bringen können. Zytotoxizitätsuntersuchungen
konnten die biologische Aktivität dieser Komplexe auch in Krebszellen
bestätigen.
de
dc.description.abstract
Cancer is among the two leading causes of death worldwide. While mutations of
DNA are causing cancer, wilful modification of the DNA structure and its
damage can cause death of cancer cells. In this fashion the DNA alkylating
agent cisplatin has been used for the treatment of cancer since 1978. Dose-
limiting side effects and the increasing resistance of some cancer types
against certain drugs call for the development of novel treatments. Among the
candidates of such new drugs are metallonucleases, which generate reactive
oxygen species and thus promote the oxidative cleavage of DNA. In the line of
the present thesis two approaches for the development of new artificial
nucleases starting from copper(II) cyclen have been employed: First the effect
of the gradual exchange of the macrocyclic heteroatoms on the nuclease
activity of the respective complexes was investigated. Ten different
copper(II) complexes with [NAXB] donor sets were synthesized and
characterized, resulting in a series of complexes ranging from copper(II)
cyclen (A = 4; B = 0) over the all oxygen complex (X = O; A = 0; B = 4) to the
all sulphur complex (X = S; A = 0; B = 4). These complexes were subjected to
DNA cleavage experiments under reducing conditions. After incubation the
samples were analysed by agarose gel electrophoresis. Opposite to the
copper(II) cyclen complex the oxygen containing complexes showed an increasing
DNA cleavage activity that is dependent on both the geometry and the oxygen
content of the respective complex. The assessment of the complexes by
electrochemical measurements revealed that the reduction of the copper(II)
complexes to the corresponding copper(I) species is electrochemically
irreversible and leads to the release of free copper(I) ions. Complexes with
higher oxygen content have a lower affinity to the copper(I) species and are
more prone to release copper. Assumedly it is the free copper species that is
catalytically active and causes the DNA cleavage. In contrast to the complexes
of oxygen-containing ligands the sulphur containing complexes show
electrochemically reversible reduction and are more efficient nucleases than
the copper(II) cyclen complex. Secondly the DNA affinity of the copper(II)
cyclen complex along with its photochemical and oxidative cleavage activity
was improved by substituting it with the DNA targeting function anthraquinone.
While the substitution with this targeting group increases the DNA cleavage
activity of the copper(II) cyclen complex substantially, the linker length has
only impact on DNA affinity, but not on cleavage activity. While substitution
of the cyclen moiety with several targeting groups increases DNA affinity, in
place of an increase of DNA cleavage activity these complexes are crosslinking
different DNA strands as could be shown by atomic force microscopy. Along with
this alteration of the DNA structure the DNA synthesis is inhibited at even
nanomolar complex concentrations. Cytotoxicity experiments prove that this
activity is retained even in cancer cells.
en
dc.format.extent
VIII, 279 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Artificial Metallonucleases
dc.subject.ddc
500 Naturwissenschaften und Mathematik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::546 Anorganische Chemie
dc.title
DNA-Spaltung durch Kupfer(II)cyclen-basierte Metallonukleasen
dc.contributor.contact
jan.hormann@fu-berlin.de
dc.contributor.firstReferee
Kulak, Nora
dc.contributor.furtherReferee
Sarkar, Biprajit
dc.date.accepted
2016-04-21
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000101936-9
dc.title.subtitle
Einfluss von Heteroatomaustausch und Interkalatorsubstitution
dc.title.translated
DNA Cleavage by Copper(II)Cyclen based Metallonucleases
en
dc.title.translatedsubtitle
Influence of Donor Atom Exchange and Intercalator Substitution
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000101936
refubium.mycore.derivateId
FUDISS_derivate_000000019129
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access