dc.contributor.author
Bothe, Melanie Kathrin
dc.date.accessioned
2018-06-07T21:18:17Z
dc.date.available
2013-04-11T09:16:22.066Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/7691
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-11890
dc.description.abstract
CLCA proteins, originally termed chloride channels, calcium activated, have on
the one hand been described to play a modulatory role in diseases with
secretory dysfunctions, predominantly cystic fibrosis (CF), asthma or chronic
obstructive pulmonary disease, and, on the other hand, in cancer. They possess
a broad tissue expression pattern including mucous membranes of various
organs. Members of the CLCA protein family modulate endogenous chloride
conductances in cultured cells in a still elusive way. The cellular processing
of CLCA proteins may indicate their role as signalling molecules because CLCA
proteins are either fully secreted proteins or possess one single
transmembrane domain in the carboxy-terminal subunit, while the amino-terminal
subunit undergoes ectodomain shedding. A recently identified HEXXH zinc
binding motif indicates that CLCA proteins might act as metalloproteases,
implying a putative channel activating function. This study addresses the
question of whether CLCA proteins might indeed represent metalloproteases. As
all CLCA proteins undergo post-translational cleavage, the cleavage process of
murine mCLCA3, a secreted CLCA family member relevant for CF as an example for
secretory diseases, was investigated with regard to an autoproteolytic
activity. Furthermore, this study includes the comparison of the cleavage
processes of a secreted murine CLCA family member with a murine CLCA family
member of CF relevant tissues possessing a transmembrane domain. The results
were supposed to either corroborate or neglect the hypotheses that CLCA
proteins are metalloproteases (hypothesis I) and that the cleavage processes
of secreted CLCA proteins differ from those of transmembrane CLCA proteins due
to the transmembrane domain (hypothesis II). Therefore, this study will set
the stage for investigating the proteolytic role of the putative CLCA
proteases in the fields of secretory disorders or cancer. The tissue
expression pattern and the role of the secreted murine CLCA family member
mCLCA3 in CF mouse models have been intensively studied in the past. To
identify a murine CLCA family member with a transmembrane domain in CF
relevant tissues, the tissue expression patterns and cellular processing of
murine mCLCA5 and mCLCA6 were investigated. The mCLCA5 protein was expressed
in keratinizing keratinocytes of stratified squamous epithelium of skin,
cervix, stomach and other organs. Though cell culture experiments and
computational analyses suggested a transmembrane domain in the carboxy-
terminal subunit, this study failed to identify the carboxy-terminal subunit
associated with the plasma membrane in immunohistochemical analyses. The
mCLCA5 protein was rather associated with keratohyaline granules. In contrast,
the mCLCA6 protein was identified at the apical plasma membrane of non-goblet
cell enterocytes in both the small and large intestine but in no other organs.
In addition, the presence of a transmembrane domain of mCLCA6 was corroborated
via acid treatment. Thus, mCLCA6 was used as a murine transmembrane CLCA
family member expressed in intestine as a CF relevant tissue and its cleavage
process was compared with that of the secreted mCLCA3 expressed in intestinal
goblet cells. In metalloproteases, the HEXXH zinc-binding amino acid motif is
involved in the catalytic process. Mutation E157Q of the HEXXH motif of mCLCA3
or mCLCA6 abrogated cleavage of both proteins in the endoplasmic reticulum,
consistent with the previously reported data for hCLCA1. In contrast to
mCLCA3E157Q whose uncleaved precursor was fully secreted similar to the wild-
type protein, the precursor molecule of mCLCA6E157Q was cleaved at the plasma
membrane instead of the endoplasmic reticulum. Both the cleavage of mCLCA3 in
the endoplasmic reticulum and the cleavage of mCLCA6E157Q at the plasma
membrane were zinc-dependent. In contrast to mCLCA3, however, which was
capable of intermolecular autoproteolytic cleavage, the cleaving agent of
mCLCA6E157Q at the plasma membrane remains unidentified. The cleavage may
therefore be performed by a metalloprotease or represents an autoproteolytic
process. Interestingly, the delayed cleavage of mCLCA6E157Q does not require
membrane association via a transmembrane domain, raising the question of
whether the same is true for other transmembrane CLCA or whether it is
specific for mCLCA6. The results of this study support the hypothesis that at
least secreted CLCA proteins represent metalloproteases because their cleavage
is zinc-dependent, abrogated after mutation of the HEXXH motif and they are
capable of intermolecular proteolysis, possibly even intramolecular cleavage.
The in vivo substrates of CLCA proteases of cluster 1 as well as their role in
secretory disorders or cancer remain to be established. Furthermore, the
mutant mCLCA6E157Q protein underwent rescue cleavage while the mutant
mCLCA3E157Q protein did not. This rescue cleavage was not dependent on the
transmembrane domain of the protein. Protein characteristics other than the
transmembrane domain might therefore be responsible for the different cleavage
processes of the mCLCA3E157Q and the mCLCA6E157Q proteins. These protein
characteristics should be addressed in the future. CLCA proteases of cluster 1
may play a role in diseases with secretory dysfunctions including CF as well
as in tumor biology. Roles of other metalloproteases in CF include activation
of chloride channels, hypersecretion and degradation of mucus. The exact role
of CLCA proteases in CF and other diseases requires knowledge on potential
substrates and the substrate specificity of CLCA proteases. Investigation of
the conserved amino acids at the cleavage site of mCLCA3 could give a first
hint towards the substrate specificity of CLCA proteases of cluster 1 and
might provide the basis for potential therapeutic interventions in the future.
de
dc.description.abstract
Für CLCA Proteine, ursprünglich als Calcium-aktivierbare Chloridkanäle
bezeichnet, wurden modulatorische Funktionen bei verschiedenen
Krankheitsbildern mit sekretorischer Dysfunktion wie CF, Asthma und COPD oder
auch bei Tumoren beschrieben. Ihr breites Expressionsspektrum umfasst vor
allem Schleimhäute in verschiedenen Organen. Zellkulturexperimente wiesen für
einige CLCA Vertreter nach, dass sie endogene Calciumaktivierbare
Chloridionenströme modulieren. Der genaue Funktionsmechanismus dieser
Modulation ist bisher unbekannt, die zelluläre Prozessierung gibt jedoch
Hinweise auf eine mögliche Funktion als Signalmoleküle. CLCA Proteine werden
entweder vollständig sezerniert oder sind mit einer einzigen
Transmembrandomäne in der Plasmamembran verankert, so dass nur die amino-
terminale Untereinheit abgegeben wird. Daher ist eine Funktion als
eigenständiger Kanal unwahrscheinlich. Eine aktuelle Studie identifizierte ein
HEXXH Aminosäuremotiv in CLCA Proteinen. Da dieses HEXXH Motiv vor allem bei
Zinkbindenden Metalloproteasen beschrieben wurde, ist eine möglicherweise
aktivierende Proteasefunktion von CLCA Proteinen durchaus denkbar. Diese
Arbeit beschäftigt sich mit der Frage, ob CLCA Proteine tatsächlich eine
Gruppe von Metalloproteasen darstellen. Alle CLCA Proteine werden post-
translational gespalten. Dieser proteolytische Prozessierungsschritt wurde in
dieser Studie auf eine auto-proteolytische Aktivität von CLCA Proteinen
untersucht. Dabei wurden ein sezerniertes und ein transmembranäres CLCA
Protein verglichen mit Fokussierung auf CF-relevante murine CLCA Vertreter als
Beispiel für eine Rolle von CLCA Proteinen in Dyskrinien. Die Ergebnisse
sollten die Hypothese, dass CLCA Proteine Metalloproteasen sind, entweder
unterstützen oder widerlegen und somit Möglichkeiten für die gezielte
Untersuchung der Rolle von CLCA Proteinen bei Krankheiten wie CF, Asthma, COPD
oder Krebs bieten. Das Gewebsexpressionsmuster von sezernierten CLCA Proteinen
und besonders die Rolle des murinen mCLCA3 in CF Mausmodellen wurden in der
Vergangenheit bereits intensiv erforscht. Zunächst befasste sich diese Studie
daher mit der Charakterisierung eines membrangebundenen, murinen CLCA Proteins
in CF-relevanten Geweben. Zu diesem Zweck wurden das Expressionsspektrum und
die zelluläre Prozessierung der CLCA Vertreter mCLCA5 und mCLCA6 untersucht.
Das mCLCA5 Protein wird von Keratinozyten des Stratum granulosum in
mehrschichtigen Plattenepithelien exprimiert, ein Zelltyp, der für CF keine
bedeutsame Rolle spielt. Obgleich in Zellkulturexperimenten mit transfizierten
HEK293 Zellen beide Untereinheiten den Golgi Apparat passieren, wird nur das
amino-terminale Spaltprodukt von mCLCA5 abgegeben. Eine Lokalisation der
carboxy-terminalen Untereinheit an der Plasmamembran von Keratinozyten konnte
jedoch nicht nachgewiesen werden, in diesen Zellen ist die carboxyterminale
Untereinheit assoziiert mit keratohyalinen Granula. Eine Transmembrandomäne
erscheint somit in vitro nicht eindeutig. Das mCLCA6 Protein befindet sich in
der apikalen Plasmamembran von Enterozyten des Dick- und Dünndarms, es ist in
den Krypten des Dickdarms mit dem CFTR Protein colokalisiert. Eine
Transmembrandomäne in der carboxy-terminalen Untereinheit konnte mittels Acid
Release nachgewiesen werden. Das mCLCA6 Protein ist somit der
vielversprechendere Kandidat für eine Modulation bei CF und auch aufgrund der
bewiesenen Transmembrandomäne besser für die geplante Studie geeignet. Daher
lag der Fokus dieser Studie im Folgenden auf dem Vergleich des
Spaltungsprozesses von mCLCA3, dem sezernierten CLCA Protein aus Becherzellen,
und mCLCA6, dem transmembranären CLCA Protein aus Nicht-Becherzell
Enterozyten. Die Spaltung von mCLCA3 und mCLCA6 findet im endoplasmatischen
Retikulum statt. Beide Proteine tragen das HEXXH Motiv, und nach Mutation
E157Q dieses HEXXH Motives bleibt die Spaltung aus. Das mutierte mCLCA3E157Q
Protein passiert dann den Golgi Apparat und wird als komplex glykosyliertes,
ungespaltenes Protein in den Überstand sezerniert. Im Gegensatz dazu wird das
mutierte mCLCA6E157Q Protein zwar ebenfalls durch den Golgi Apparat
transportiert, es gelangt jedoch an die Plasmamembran, wird dort mittels
Transmembrandomäne verankert und gespalten, so dass nur die amino-terminale
Untereinheit abgegeben wird. Die Spaltung an der Plasmamembran ist
zinkabhängig, es handelt sich entweder um eine verspätete Selbstspaltung des
Proteins oder um Proteolyse durch eine Metalloprotease. Der
Spaltungsmechanismus ist jedoch nicht abhängig von der Verankerung des
mCLCA6E157Q Proteins in der Plasmamembran. Auch ein sezerniertes Trunkat, dem
die Transmembrandomäne fehlt, wurde nach der E157Q Mutation noch gespalten.
Offensichtlich spielen andere Faktoren bei der unterschiedlichen Prozessierung
von mCLCA6 eine Rolle. Dies wirft die Frage auf, ob eine Unterteilung von CLCA
Proteinen in sezernierte Proteine und membranständige Proteine ausreichend ist
oder ob eine andersartige Unterteilung möglich und sinnvoll wäre. Das mCLCA3
Protein spaltet sich im endoplasmatischen Retikulum mittels intermolekularer
Auto-Proteolyse in Abhängigkeit von Zink. Die Spaltung erfolgt zwischen
Aminosäure R695 und A696. Das mCLCA3 Protein ist somit in der Lage, ein
anderes Protein zu erkennen und zu spalten. Nachgewiesen wurde dies zwar
bisher nur für das mCLCA3 Protein selbst, aber zukünftige Studien werden sich
mit der Identifizierung von Substraten der CLCA Proteine befassen. Neben der
Fähigkeit zur intermolekularen Autoproteolyse sind die Zinkabhängigkeit des
Spaltungsprozesses und das katalytisch aktive HEXXH Motiv Hinweise, die die
Hypothese untermauern, dass CLCA Proteine des Cluster 1 tatsächlich
Metalloproteasen sind. Für die anderen CLCA Cluster spricht zwar bisher nichts
gegen eine Metalloproteaseaktivität, der endgültige Beweis muss jedoch noch
erbracht werden. CLCA Proteasen des Cluster 1 könnten sowohl bei Krankheiten
mit sekretorischer Dysfunktion wie Cystischer Fibrose als auch bei Tumoren
eine Rolle spielen. Beispielsweise wurde für andere Proteasen bei CF eine
Rolle sowohl bei der Aktivierung von Chloridkanälen als auch bei der
Hypersekretion von Mucus oder sogar beim Abbau des vermehrten Mucus
propagiert. Die genaue Rolle von CLCA Proteasen bei den genannten Krankheiten
erfordert Kenntnisse der Substrate und der Substratspezifität dieser
Proteasen. Einen ersten Hinweis auf die Substratspezifität kann die
Untersuchung der konservierten Aminosäuren der CLCA Spaltstelle liefern. Damit
wird die Erforschung der modulatorischen Funktion von CLCA Proteasen des
Cluster 1 bei den genannten Krankheitsfeldern möglich sein und somit die Basis
für zukünftige therapeutische Anwendungsgebiete darstellen.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
cystic fibrosis
dc.subject
chronic obstructive pulmonary disease
dc.subject
metalloproteinases
dc.subject
protein transport
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Are CLCA proteins metalloproteases?
dc.contributor.firstReferee
Univ.-Prof. Dr. Achim D. Gruber, Ph.D.(Cornell Univ.)
dc.contributor.furtherReferee
Univ.-Prof. Dr. Dr. Ralf Einspanier
dc.contributor.furtherReferee
PD Dr. Michael Veit
dc.date.accepted
2012-11-23
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000094034-8
dc.title.subtitle
Comparison of the cleavage processes of the secreted mCLCA3 and the
transmembrane mCLCA6 proteins
dc.title.translated
Sind CLCA-Proteine Metalloproteasen?
de
dc.title.translatedsubtitle
Vergleich der Spaltungsprozesse des sezernierten mCLCA3- und des
transmembranären mCLCA6-Proteins
de
refubium.affiliation
Veterinärmedizin
de
refubium.mycore.fudocsId
FUDISS_thesis_000000094034
refubium.note.author
Mensch und Buch Verlag ; Aus Copyrightgründen sind die Zeitschriftenartikel
hier nicht online veröffentlicht.
refubium.mycore.derivateId
FUDISS_derivate_000000013249
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access