dc.contributor.author
Andrich, Kathrin
dc.date.accessioned
2018-06-07T21:17:31Z
dc.date.available
2017-08-29T07:12:30.229Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/7676
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-11875
dc.description
Acknowledgements IV List of abbreviations IX 1 Zusammenfassung 1-1 1 Abstract
1-2 2 Introduction 2-1 2.1 Connecting AL amyloidosis and multiple myeloma 2-1
2.1.1. Amyloidoses 2-2 2.1.2. Monoclonal gammopathies 2-3 2.1.2.1 LC can be
isolated from urine 2-3 2.1.3. Myelomagenesis 2-3 2.2 LC sequence analysis 2-5
2.2.1. Light chain sequencing 2-6 2.2.2. Automated MS-based sequencing, a
modern myth 2-6 2.2.3. De novo sequencing-assisted peptide mapping 2-7 2.2.4.
Underlying assumption of the base peak interrogation method 2-8 2.3
Implications of immunoglobulin light chain structure 2-9 2.3.1. Light chains
have a highly conserved variable and constant domains 2-10 2.3.2. Individual
light chains will always be unique 2-11 2.3.3. Unique, but not as variable as
one would expect 2-12 2.3.4. Structural determinants of the biophysical
behavior of light chains 2-14 2.3.5. Glycosylation of light chain proteins
2-16 2.4 Amyloid 2-18 2.4.1. Protein folding and misfolding 2-19 2.4.2.
Amyloid aggregation 2-20 2.5 Studies on amyloidogenic LC 2-24 2.6 The effects
of (-)-epigallocatechin-(3)-gallate effect on amyloids 2-25 2.6.1.
Epigallocatechin-3-gallate 2-25 2.6.2. Phenomenological observations on EGCGs
interaction with amyloid 2-26 2.6.3. Redirection, remodeling & seeding
competence of aggregates 2-28 2.6.4. Elucidating the mechanism of EGCGs
interaction with amyloid 2-30 2.7 Scope of this thesis 2-35 3 Materials and
methods 3-1 3.1 Patient material 3-1 3.1.1. Patient diagnosis 3-1 3.1.2.
Patient selection for this study 3-2 3.2 Experimental procedures 3-2 3.2.1.
Chemicals, material and equipment 3-2 3.2.2. Light chain protein purification
3-7 3.2.2.1 Analysis of target and most relevant matrix proteins 3-7 3.2.2.2
LC Purification from the urine of patients without albuminuria 3-8 3.2.3.
Biochemical characterization of soluble light chains 3-9 3.2.3.1 Gel
electrophoresis and Western blots 3-9 3.2.3.2 Gel stainings 3-9 3.2.3.3
Western blot and Immunostaining 3-11 3.2.3.4 Sample storage conditions 3-12
3.2.3.5 LC concentration and HSA content 3-12 3.2.3.6 Molecular weight
determination of monomer 3-13 3.2.3.7 Dimer/monomer ratio 3-13 3.2.3.8
Proteolysis 3-13 3.2.3.9 Glycosylation analysis 3-14 3.2.4. Biophysical
characterization 3-17 3.2.4.1 CD spectroscopy 3-17 3.2.4.2 Tryptophan
fluorescence spectroscopy 3-17 3.2.4.3 Guanidine hydrochloride denaturations
3-17 3.2.4.4 Evaluation of unfolding data 3-18 3.2.5. Aggregation assays &
aggregate characterization 3-22 3.2.5.1 Establishment of monomerization
conditions 3-22 3.2.5.2 Optimization of aggregation conditions 3-22 3.2.5.3
Continuous aggregation assays with sequential shaking 3-24 3.2.5.4
Discontinuous aggregation assays with permanent shaking 3-25 3.2.5.5 Atomic
force microscopy imaging 3-25 3.2.5.6 Congo red staining and fluorescence
imaging 3-26 3.2.5.7 Electrophoretic-stability assays 3-26 3.2.5.8
Ultracentrifugation / solubility assay 3-26 3.2.6. MS-based protein sequencing
3-26 3.2.6.1 Development of a peptide mapping search database 3-26 3.2.6.2 LC-
MS/MS measurement at the Mayo Clinic Rochester 3-27 3.2.6.3 MS/MS data
analysis with the PEAKS Studio software 3-29 3.2.6.4 Prediction of
amyloidogenicity 3-41 4 Results 4-1 4.1 LC purification 4-1 4.1.1. Development
of a purification strategy 4-1 4.1.2. Purification of LC from urine of non-
kidney-impaired patients 4-3 4.1.2.1 Sample clarification and capture
purification 4-3 4.1.2.2 Pilot clarification and capture purification 4-4
4.1.2.3 Optimization diafiltration for capture purification step 4-5 4.1.2.4
Final purified proteins 4-5 4.1.2.5 Purification of LC from patient sequenced
from bone marrow-derived DNA 4-6 4.2 Biochemical characterization 4-7 4.2.1.
Sample storage conditions 4-7 4.2.2. Human serum albumin content 4-8 4.2.3.
Apparent molecular weight 4-9 4.2.4. Monomers & cross-linked dimers or higher
order multimers 4-9 4.2.5. Susceptibility to proteolysis at 37°C 4-10 4.2.6.
Glycosylation of light chain proteins 4-11 4.2.7. Summary 4-12 4.3 Biophysical
characterization 4-13 4.3.1. CD spectroscopy and thermal denaturations 4-13
4.3.2. Chemical denaturations with guanidine hydrochloride 4-17 4.3.3. Summary
4-21 4.4 Aggregation behavior of Ig light chains 4-21 4.4.1. Establishment of
aggregation assays 4-21 4.4.1.1 Reduction as prerequisite for LC aggregation &
pH-dependence 4-22 4.4.1.2 Temperature, agitation and salt concentration 4-25
4.4.1.3 Albumin forms negligible amounts of ThT positive species 4-27 4.4.1.4
Summary 4-28 4.4.2. Analysis of LC aggregation behavior 4-28 4.4.3. The effect
of epigallocatechin-3-gallate on light chain aggregation 4-33 4.4.4. Summary
4-37 4.5 Analysis of the influence of glycosylation on LC aggregation 4-37
4.5.1. Establishment of native deglycosylation 4-37 4.5.2. Secondary structure
of natively deglycosylated κ-AL-1 4-38 4.5.3. Light chain stability 4-39
4.5.4. ThT aggregation assays 4-41 4.5.5. Summary 4-42 4.6 MS-based LC
sequencing 4-42 4.6.1. Development of a search database for peptide mapping
4-43 4.6.2. Advancement of base peak interrogation for LC sequencing 4-45
4.6.2.1 Optimization and refinement of base peak interrogation 4-47 4.6.2.2
Method evaluation based on the sequencing of the λ-AL-1 sample 4-47 4.6.2.3
Extension of base peak interrogation method 4-49 4.6.3. The sequence of the
λ-AL-1 light chain 4-50 4.6.3.1 Sequence quality, coverage and germline donor.
4-50 4.6.3.2 Mutations from germline sequence and influence on
amyloidogenicity 4-52 4.6.4. On increasing the efficiency of BPC peak
interrogation 4-55 4.6.4.1 Could the number of analyzed digests be reduced?
4-55 4.6.4.2 Top 5 BPC peak analysis of samples λ-AL-1, λ-AL-2 and λ-MM-3 4-56
4.6.5. Summary 4-58 5 Discussion 5-1 5.1 LC purification 5-1 5.2 Biochemical
characterization 5-4 5.3 Aggregation behavior of Ig light chains 5-6 5.3.1.
Relation of LC stability and aggregation 5-6 5.3.2. LC aggregation under
reducing conditions 5-6 5.3.3. Analysis of LC aggregation behavior 5-7 5.3.4.
The effects of EGCG on amyloid formation 5-9 5.3.4.1 EGCG affects LC
aggregation in a non-sequence-specific manner 5-9 5.3.4.2 EGCG influence
amyloidogenesis by a comprehensive binding mode 5-9 5.4 Analysis of the
influence of the glycosylation 5-13 5.5 MS-based LC sequencing 5-13 5.5.1.
Evaluation of the base peak interrogation method 5-14 5.5.2. Implications of
somatic mutations in λ-AL-1 light chain 5-15 6 Bibliography 6-1 7 Academic CV
7-1 8 Appendix 8-1 8.1 LC Purification 8-1 8.1.1. Experimental procedures 8-1
8.1.1.1 Chemicals, material and equipment 8-1 8.1.1.2 LC purification from
high-albumin matrices 8-1 8.1.2. Purification of first sample batch 8-4 8.1.3.
Towards a purification strategy for Ig light chains from urine and serum of
kidney-impaired patients 8-5 8.1.3.1 Strategy 1: Direct size exclusion
chromatography. 8-6 8.1.3.2 Strategy 2: Depletion of albumin and IgG 8-7
8.1.3.3 Strategy 3: LC-enrichment non-antibody affinity chromatography 8-8
8.1.3.4 Strategy 4: Enrichment of LC via with Immune affinity chromatography
8-10 8.1.3.5 Summary 8-13 8.1.3.6 Discussion: LC purification from high
albumin matrices 8-13 8.1.3.7 Proposed purification strategy for urine of
kidney impaired patients 8-14 8.3 Biochemical characterization 8-16 8.3.1.
Data: Molecular weight determination 8-16 8.4 Biophysical characterization
8-18 8.4.1. Data: Thermal denaturations (CD) 8-18 8.4.2. GdnHCl denaturations
8-28 8.4.2.1 Optimizations for GdnHCl-induced LC denaturations 8-28 8.4.2.2
Reversibility of GdnHCl denaturations 8-30 8.4.2.3 Data: Trp fluorescence 8-32
8.4.2.4 Data: CD spectroscopy 8-43 8.5 Aggregation behavior of Ig light chains
8-46 8.5.1. Experimental procedures 8-46 8.5.1.1 Aggregation assays &
aggregate characterization 8-46 8.5.2. Data: LC aggregation kinetics 8-48
8.5.3. EGCG affects LC aggregation non-sequence-specific 8-49 8.5.3.1
Establishment of conditions to evaluate EGCGs influence on LC aggregation 8-49
8.5.3.3 Data: Aggregation in presence of EGCG 8-54 8.6 MS-based sequencing
8-56 8.6.1. Optimization and refinement of base peak interrogation 8-56 8.6.2.
Peak tables and alignment tables 8-60 8.6.2.1 λ-AL-1 sample 8-60 8.6.2.2
λ-AL-2 & λ-MM-3 sample 8-86
dc.description.abstract
AL amyloidosis and multiple myeloma (MM) is caused by plasma cells that form a
clonal population that produces monoclonal light chains (LC). A clonal
population exceeding 10% of all bone marrow plasma cells is considered as MM,
a form of bone marrow cancer. Only about 46% of AL patients progress to MM. In
contrast to MM AL is defined by amyloid deposits formed by the LC. Amyloid
fibrils contain a common cross-β-sheet motif which binds to amyloidophilic
dyes like Thioflavin T (ThT). Epigallocatechin-3-gallate (EGCG) was discovered
as a possible therapeutic agent in amyloidosis. It reduced cardiac amyloid
deposits in AL patients suggesting its potential as secondary treatment
option. The aim of my thesis was to characterize structures and stabilities of
authentic amyloidogenic light chains, to analyze their aggregation behavior in
vitro, and to investigate EGCG as a possible treatment against amyloidogenic
deposits in patients suffering from AL. I isolated nine LC proteins (2x κ-AL,
2x λ-AL, 2x κ-AL, 3x λ-AL) from patient’s urine. SDS-PAGE resolved LC into
monomers and disulfide-linked dimers. Thermal and chemical stabilities of LC
proteins correlated weakly to MM or AL, suggesting that kinetic factors might
determine amyloid formation. All light chains formed ThT-positive high
molecular weight aggregates. Aggregation kinetics displayed two distinct
phases. The first aggregation phase was initiated by reduction of inter-
molecular disulfide bonds. It corresponded to conversion into oligomers, while
the second phase corresponded to cross-β-sheets formation. At low LC
concentrations, all aggregation kinetics showed only weak concentration
dependence, suggesting that a conformational change was rate-limiting. At
higher concentrations AL-LC, but not MM-LC displayed, concentration dependence
typical for amyloid formation kinetics. EGCG inhibited the second aggregation
phase and induced SDS-stable aggregates in all nine LC. Glycosylation of one
LC did not affect its aggregation. In addition to the analysis of LC
aggregation I determined the sequence of one LC (λ-AL-1) via mass
spectrometry. I advanced the previously described base peak interrogation
method, which infers LC peptide sequences after combined peptide mapping and
de novo sequencing from LC-MS/MS data: To confidently determine the sequence
of the λ-AL-1 LC an IMGT-derived germline LC sequence database, alignment to
the IMGT numbering system, and a scoring system for sequence quality were
introduced. I identified 10 mutations of the λ-AL-1 LC compared to its
germline parent. Strikingly, most of these mutations lay at the protein-
protein interface inside the LC-dimers. This supports my interpretation of the
kinetic data that conformational change rather than self-assembly determines
LC amyloid formation.
de
dc.description.abstract
Sowohl AL Amyloidose als auch Multiples Myelom (MM) werden durch klonale
Plasmazellen verursacht, die monoklonale Leichtketten produzieren. Diese
klonalen Plasmazellen gelten als MM, sobald sie einen Anteil von über 10% des
Knochenmarks ausmachen. Dies ist jedoch nur bei 46% der AL-Patienten der Fall.
Deshalb wird für die Diagnose AL das Vorhandensein von amyloiden
Proteinablagerungen herangezogen. Diese Ablagerungen besitzen ein
cross-β-Faltblatt Motiv, an welches spezifische Farbstoffe wie Thioflavin T
(ThT) binden können. Das Polyphenol Epigallocatechin-3-gallat (EGCG), das an
das selbe cross-β-Faltblatt Motiv bindet, ist ein möglicher Wirkstoff zur
Behandlung von AL. EGCG war in der Lage Amyloidablagerungen im Herzen
einzelner Patienten aufzulösen. Meine Arbeit analysiert die Amyloidbildung von
Leichtketten aus dem Urin von AL und MM Patienten und untersucht zudem den
mechanistischen Effekt von EGCG auf die Leichtkettenaggregation. Dazu wurden
sowohl die Struktur und Stabilität von Leichtketten als auch ihr
Aggregationsmechanismus untersucht. Zunächst habe ich ein Protokoll zur
Isolierung von neun Leichtkettenproteine (2x κ-AL, 2x λ-AL, 2x κ-AL, 3x λ-AL)
aus dem Urin von AL- und MM-Patienten etabliert. Die aufgereinigten
Leichtketten lagen zu 50% als Monomere und zu 50% als Disulfid-verbrückte
Dimere vor. Ihre Stabilität korrelierte in der thermischen und chemischen
Denaturierung nur schwach zur Diagnose MM oder AL, was nahelegt, dass die
unterschiedliche Aggregation von AL und MM Leichtketten in vivo auf kinetische
Faktoren zurückzuführen ist. In vitro formten sowohl AL- als auch MM-
Leichtketten ThT-bindende Aggregate in einer zweiphasigen Aggregationskinetik.
Voraussetzung für die erste Phase war die Reduzierung intermolekularer
Disulfidbrücken. Hierbei wandelten sich monomere Leichtketten in
aggregationsfähige Oligomere um. In der zweiten Phase bildete das Protein
cross-β-Faltblätter. Dabei hing die erste Phase nicht von der
Leichkettenkonzentration ab. Dies deutet darauf hin, dass hier eine
Konformationsänderung geschwindigkeitsbestimmend ist. Im Gegensatz zu MM-
Leichtketten, war die zweite Aggregationsphase von AL-Leichketten abhängig von
der Leichtkettenkonzentration. EGCG inhibierte die zweite Aggregationsphase
aller neun Leichtketten und induzierte SDS-stabile Aggregate. Die
Glykosylierung einer Leichtkette hatte keinen Einfluss auf deren
Aggregationsverhalten. Weiterhin habe ich ein massenspektrometrisches
Verfahren zur Sequenzierung von Leichtketten weiterentwickelt. Mittels
Basispeak-Abfrage und de novo Sequenzierung assistiertem Peptidmapping in
einer IMGT-abgeleiteten LC-Sequenzdatenbank konnte ich die Sequenz der λ-AL-1
Leichtkette und ihre Sequenzgüte zuverlässig bestimmen. Ich konnte 10
Mutationen im Vergleich zum Genvorläufer bestimmen, von denen viele im
Protein-Protein-Interface innerhalb von LC Dimeren lagen. Dies stützt meine
Interpretation, das eine Konformationsänderung der Bildung von LC-Amyloid
bestimmt
de
dc.format.extent
289 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Systemic amyloidosis
dc.subject
protein biophysics
dc.subject
immunoglobulin light chains
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
Authentic full-length immunoglobulin light chains: Characterization,
aggregation behavior & drug intervention
dc.contributor.firstReferee
Prof. Dr. Jan Bieschke
dc.contributor.furtherReferee
Prof. Dr. Christian Freund
dc.date.accepted
2017-08-18
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000105383-5
dc.title.subtitle
Or about chasing dragons
dc.title.translated
Authentische Volllängen-Immunglobulin-Leichtketten: Charakterisierung,
Aggregationsverhalten und therapeutisch Intervention
de
dc.title.translatedsubtitle
Oder über das Jagen von Drachen
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000105383
refubium.mycore.derivateId
FUDISS_derivate_000000022159
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access