dc.contributor.author
Schmidt, Bruno Eugen
dc.date.accessioned
2018-06-07T20:54:59Z
dc.date.available
2008-11-25T07:47:01.135Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/7126
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-11325
dc.description.abstract
This thesis describes two research goals. First to extend the charge reversal
(NeNePo) spectroscopy of small Ag clusters by adaptive coherent control
strategies to enhance the excitation selectivity of a desired quantum state.
Second, to improve the control tool by providing one octave of coherent
frequencies, spanning from the VIS to the NIR region. For this purpose both
high stability and reproducibility of the broadened spectrum are
indispensable. This was realized by filamentation in atmospheric air through
slightly focusing amplified fs laser pulses of about 1 mJ. In the development
of this light source as a tool for investigations of ultrafast dynamics, the
filamentation process itself was studied to learn more about the interplay
between the Kerr effect and weakly ionized plasma. The characterization of
different gases confirmed an analogous mechanism based on the initial action
of self-phase modulation, causing spectral broadening around the laser
fundamental and the retarded generation of an asymmetric spectral shoulder
approaching the UV range. One explanation found in the literature for this
pronounced broadening on the short wavelength side is a plasma blue shift
which was also retraced in simulations for this work. Generally, gases with
higher nonlinear refractive index require lower pulse energy and gas pressure,
respectively, to achieve WL generation. The shape of spectral broadening
around the fundamental strongly depends on the prechirp. In contrast, the VIS
tail keeps its spectral shape and positive chirp, unless a strong prechirp
completely terminates filamentation. Zero prechirping at high input energy or
pressure, respectively, causes the highest nonlinearity and the pulse tends to
first split temporally. Later, with still increased nonlinearity it also
splits spatially. An alternative for tuning the filamentation conditions lies
in adding He to the air which tends to halt the filamentation process. This
quenching effect due to the low nonlinearity of He might be utilized to scale
filamentation towards even higher energy throughput. However, with the right
preconditions a reliable pulse compression down to 6.3 fs for filamentation in
air was enabled with four bounces on chirped mirrors in the range from 600—900
nm. Currently, these are the shortest pulses generated via filamentation in
air. Variable compression from 450—1000 nm can be achieved with the bare 4-f
setup which actually corresponds to a telescope-grating compressor. Since the
characterization of few optical cycles and octave exceeding bandwidths,
respectively, is as demanding as its generation, a commercial solution is not
available. By implementing a TG-FROG, bandwidths ranging from 380—950 nm were
optically gated for the first time. This provided the basis for extensively
studying the temporal and spectral properties of the WL. This FROG variant
utilizes 4WM of the three incoming beams according to a forward box scenario
and requires only BK 7 glass as the nonlinear medium. Several special features
of this gate mechanism are very promising for a wide range of applications in
ultrafast pulse characterization: First, it does not convert the frequency of
the gated pulse (unlike SHG, THG or SFG), and therefore leads to intuitive
traces avoiding ambiguities of other FROG methods. Second, it handles the
entire transmission range of the nonlinear medium and is realized with
standard optical components. The problem of choosing appropriate beam
splitters to provide the three beams can be overcome by geometrical beam
separation, as was successfully demonstrated for the measurement of the few
cycle pulses. Furthermore, the combination of WL shaping and 4WM not only
allows the characterization of very complex pulse forms but also the unique
possibility of cross-correlation measurements in a single beam arrangement,
which was named single beam TG-X-FROG. Its prerequisite is a controllable
pulse shaping device. To assure this controllability from 450—950 nm, the WL
shaper built in this work needed to be calibrated for every pixel due to the
wavelength dependent operation of the liquid crystals in the spatial light
modulator (SLM). In this manner, the realization of a double color pump probe
excitation scheme was demonstrated likewise as a single beam setup. In this
example, a short VIS pulse centered at 625 nm was time delayed with respect to
a short NIR pulse centered at 800 nm by applying a linear phase ramp to the
VIS part by the SLM. Since the third order optical nonlinearity of the 4WM
process connotes a high sensitivity of the 4WM signal on the input pulse
duration, it was utilized for adaptive pulse compression with the shaper. By
this, optimizing the 4WM signal in a feedback loop experiment with an
evolutionary algorithm turned out to be a straight forward approach for pulse
compression of the filament output. This technique differs from others, in
that knowledge of the phase of the incoming light field is not required and
the optimized spectral phase function on the SLM defines a correcting
reference from which analytical functions can be generated. As the other goal
of the thesis was the extension of the NeNePo scheme by shaped pulses, an
analytic approach was established first on the diatomic Ag2 before the free
optimization of the WL was applied for Ag3NeNePo spectroscopy. The analytic
approach covers the generation of pulse trains with variable sub pulse
separation by amplitude shaping the laser fundamental spectrum. This delivered
a cyclic driving of the photo detachment step, being subsequently probed by a
single time delayed ionization pulse. Due to the Fourier relation between the
time and frequency domains, a synchronization of the sub pulse separation to
the vibrational period of the neutral Ag2 preferentially excites the
vibrational eigenstates of the neutral species, leading to an enhanced
localization of the wave packet which can be probed most efficiently. This
experiment opens the door towards mode selective pumping and probing of the
NeNePo process of more complex systems. When adding one atom to create the
trimer Ag3, the nuclear dynamics gains complexity. In particular, the neutral
Ag3 undergoes configurational changes from linear to an obtuse triangular
structure by bending the outer atoms. The bending ends with an intra-molecular
collision, followed by IVR which populates other vibrational modes. Since
coherence effects after that collision were never identified in previous pump
probe experiments, free optimization of WL pulses denotes a new and promising
approach. The optimized supercontinuum exhibits two distinct spectral regions,
each containing very short pulses or pulse sequences, respectively. The NIR
spectral region from 750—950 nm was exclusively optimized to a compressed
pulse when starting from phase noise. In contrast, the VIS part from 530—760
nm contains a rich structure apparent in all optimization experiments. The
time scales of the spectrally and temporally modulated VIS sequences exhibit
for the first time temporal structures far below the time scale of the IVR
process. Thus they refrain from an intuitive interpretation in the aimed
direction of finding indications for preserved coherences after the collision.
In a similar sense Talbot annotated his Photogenic Drawings “They are
impressed by Nature's hand; and what they want us jet of delicacy and finish
of execution arises chiefly from our want of sufficient knowledge of her
laws.” To further verify the excitation path to the cationic species, a
collaboration with theory is in progress. However, the closed loop results for
free phase optimization of the NeNePo process witness the first-time
application of shaped WL, generated via filamentation, for coherent quantum
control. Since the development of new thing leads to unexpected observations
like the TG-X-FROG, the WL optimization results refrain from an intuitive
interpretation in the aimed direction of finding indication for preseved
coherences after the intramolecular collosion The unique property of TG FROG
in combination with a octave spanning pulse shaper allows performing of pump
probe excitation and cross-correlation within one single beam (TG-X-FROG).
Besides ultra broadband operation, the capability of pulse compression to 6.3
fs is another striking property which is valuable for the generation of as
pulses. The new developed setup is distinguished on one hand by the ease of
realization, since the supercontinuum and the few cycle pulses are achieved in
air and on the other hand in the high economy in optical components. The
dispersion free TG-X-FROG consists of seven standard optical components only.
Utilizing the output of the filamentation process as a light source emphasizes
the generation of new wavelengths, blue shifted with respect to the inducing
laser fundamental. The investigated TG-X-FROG mechanism was proven to gate
frequencies which lie one octave below the grating pulses. Why not transfer
this scheme to a fundamental wavelength of 400 nm? Although the frequency
doubling from 800 to 400 nm reduces pulse energy, filamentation will benefit
from the increased nonlinear index at shorter wavelengths and increasing cross
sections for multi photon ionization at higher photon energy. The spectral
operation for TG FROG is limited by the transmission range of the nonlinear
medium which closes at about 190 nm in case of Fused Silica. Since reflective
pulse shapers with mirrors are already available, the single beam pump probe
excitation and the single beam TG-X-FROG can be applied for investigation on
biological systems which typically absorb in the UV range. By this, the
artists palette will be further extended for drawing new images of nature.
de
dc.description.abstract
Diese Arbeit verfolgte zwei Ziele. Erstens die Erweiterung der Pump Probe
Ladungsumkehrspektroskopie (NeNePo) an kleinen Silber Clustern mit geformten
fs Pulsen. Zunächst wurde das Photodetachment des zweiatomigen Anions mittels
variabler Pulszüge zum neutralen Ag2 etabliert, welches als einfachstes
Modellsystem vibratorischer Kerndynamik zu sehen ist. Ein zeitverzögerter
Probepuls löst ein weiteres Elektron ab und generiert das gemessene Ag2
Signal. Mit dem Durchscannen des Subpulsabstandes um die Vibrationsperiode des
Neutralteilchens herum konnte die Fokussierung des Ag2 Wellenpaketes gesteuert
werden, abzulesen an der Modulationstiefe des transienten Ag2 Signals. Um neue
Untersuchungsmöglichkeiten zur Analyse der Kerndynamik des Ag3 Trimers zu
eröffnen, bestand der zweite Teil der Arbeit in der Weiterentwicklung der
kohärenten Kontrollmethode hin zu geformten fs-Weißlichtpulsen. Als
Lichtquelle diente die Filamentierung verstärkter fs Pulse (0.6-1.2 mJ)
überwiegend in atmoshärischer Luft. Die Steuerung der
Filamentierungsbedingungen, die u.a. zu oktavüberschreitenden Spektren von
380-950 nm führten, wurde ebenso für Edelgase, wie für Sauerstoff untersucht.
Generell zeichnete sich dabei ein einheitlicher Entstehungsmechanismus der
stark unsymmetrischen Spektren ab. Die maßgebenden Effekte sind die spektrale
Verbreiterung um die Fundamentale des Lasers aufgrund von
Selbstphasenmodulation (SPM) bereits bei niedrigen Intensitäten, gefolgt von
einer Plasmaflanke auf der Rückseite des Pulses, die eine kontinuierliche
Verbreiterung bis hin zu UV Wellenlängen hervorruft. Im Rahmen der
Filamentcharakterisierung zeigte sich eine starke Abhängigkeit des NIR
Spektrums vom Chirp des erzeugenden Pulses, bei konstanter Charakteristik des
VIS Anteils - sofern vorhanden. Letzteres ist ein weiterer Hinweis auf
zeitliche Selbständerung der Propagationsbedingungen im Filament. Wenngleich
die Auswirkungen solcher zeitlicher Selbständerungen wie z.B. self-steepening
aus den Messdaten nicht direkt ablesbar waren, so konnte doch das zeitliche
Aufspalten in multiple Subpulse bei hohen Gasdrücken bzw. Intensitäten
beobachtet werden. Außerdem konnten die bis dato kürzesten, an Luft
generierten Pulse demonstriert werden. Die Kürze von 6.3~fs gelang durch
Filamentierung in der Laboratmosphäre und anschließender Kompression mittels
zweier standard Chirp-Spiegel. Mit einem in dieser Arbeit entworfenen TG-FROG
wurden die Pulse vermessen. Die Besonderheiten dieses TG-FROG bestehen in der
minimalen Anzahl optischer Komponenten, der geometrischen Strahlteilung zur
Vermeidung von Materialdispersion und in der Verwendung von BK 7 Glass als
nichtlinearem Medium. Dieses ermöglicht die Charakterisierung von Pulslängen
mit nur wenigen optischen Zyklen einerseits, sowie oktavübergreifender
Spektren (380-950 nm) andererseits, durch einen einfachen und robusten Aufbau.
Die volle Leistungsfähigkeit des Aufbaus entfaltet sich in Kombination mit dem
Pulsformer, dessen Konzeption und Kalibrierung unabhängige Phasen- und
Amplituden-Änderungen im Bereich von 450-1000 nm erlauben. Diese Kombination
ermöglicht: (i) adaptive Pulskompression zu wenigen optischen Zyklen mittels
genetischer Optimierung, (ii) die Realisierung eines Zwei-Farben-Pump-Probe
Experiments mit einem einzigen Strahl und (iii) die Möglichkeit einer
optischen Kreuzkorrelation des NIR und VIS Anteils ebenfalls innerhalb eines
Strahls (TG-X-FROG). Letztgenannte Funktionalität ergibt sich aus der
Entstehung des transienten Gitters durch den intensiven NIR Anteil, an welchem
das im Allgemeinen schwächere VIS Spektrum gestreut wird. Das Zusammenspiel
aller Bestandteile, die hohe Stabilität und das hervorragende Strahlprofil
ermöglichten die erfolgreiche Implementierung in eine adaptive
Rückkopplungsschleife, bei der ein evolutionärer Algorithmus die Ionenausbeute
des Ladungsumkehrsignals von Ag3 in der Gasphase optimierte. Die erstmalige
Anwendung geformter Weißlichpulse aus einem Plasmafilament in der
Ultrakurzzeitspektroskopie im Rahmen eines ``closed loop'' Experiments
lieferte neuartige Anregungssignaturen für die Ladungsumkehr des Ag3 Clusters.
Dabei zeichnen sich sehr unterschiedliche Verhalten für den NIR und VIS
Bereich aus den Spuren der optimierten Pulse ab. Wird der NIR Bereich als ein
komprimierter Puls für multiphotonische Ionisation genutzt, ergeben sich im
VIS Anteil sehr kurze, reichhaltige Strukturen, auf Zeitskalen die wesentlich
kürzer sind als in bisherigen Experimenten beobachtet.
de
dc.format.extent
VI, 182 S.
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
White Light Filamentation
dc.subject
Four Wave Mixing
dc.subject
Coherent Control
dc.subject
Few Cycle Pulses
dc.subject
Octave Exceeding TG-FROG
dc.subject
Cahrge Reversal Spectroscopy
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
White light filamentation
dc.contributor.contact
bruno.schmidt@fu-berlin.de
dc.contributor.firstReferee
Prof. Wöste
dc.contributor.furtherReferee
Prof. Schwentner
dc.date.accepted
2008-11-17
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000006175-8
dc.title.subtitle
tailoring & application for charge reversal of Ag3
dc.title.translated
Weißlicht Filamentierung
de
dc.title.translatedsubtitle
Steuerung & Anwendung auf Ladungsumkehr des Ag3
de
refubium.affiliation
Physik
de
refubium.mycore.fudocsId
FUDISS_thesis_000000006175
refubium.mycore.derivateId
FUDISS_derivate_000000004706
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access