dc.contributor.author
Feng, Meili
dc.date.accessioned
2018-06-07T20:37:43Z
dc.date.available
2017-02-17T10:51:20.116Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/7009
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-11208
dc.description
List of Contents ACKNOWLEDGEMENTS
.............................................................................
VI ABSTRACT
.....................................................................................................
1 LIST OF CONTENTS
......................................................................................
3 LIST OF FIGURES
..........................................................................................
6 LIST OF TABLES
..........................................................................................
13 CHAPTER 1
..................................................................................................
14 1\. GENERAL INTRODUCTION
................................................................... 14 1.1
HYDROLOGICAL RESIDENCE TIME IN RIVER NETWORKS AND LINKAGES TO WATER QUALITY
............................................................................................
16 1.2 THE TIME AND SPACE DIMENSIONS OF PEAKING FLOWS FROM HYDROPOWER
REGULATION IN RIVERS
..................................................................................
18 1.3 IMPACTS OF EXTREME CLIMATIC EVENTS ON RIVERINE ECOSYSTEM ............
22 1.4 RESEARCH GAPS
...................................................................................
23 1.5 AIMS AND STRUCTURE OF THE THESIS
..................................................... 24 CHAPTER 2
..................................................................................................
26 2\. ESTIMATING WATER RESIDENCE TIME DISTRIBUTION IN RIVER NETWORKS BY
BOOSTED REGRESSION TREES (BRT) MODEL ........... 26 ABSTRACT
....................................................................................................
26 2.1 INTRODUCTION
......................................................................................
27 2.2 MATERIALS AND METHODS
..................................................................... 30 2.2.1
Study area and dataset
................................................................. 30 2.2.2
Factors affecting water residence time
.......................................... 32 2.2.3 Spatial distribution
model: Boosted Regression Trees (BRT) ....... 33 2.2.4 Travel time of
hydraulic waves method ......................................... 34 2.3
RESULTS AND DISCUSSION
..................................................................... 36 2.3.1
Governing factors for water residence time ...................................
36 2.3.2 Interactional effects of predictive variables
.................................... 40 2.3.3 Spatial distribution of
predicted water residence time ................... 42 2.3.3.1 Water residence
time under annual average discharge ................................ 42 4
2.3.3.2 WRT distribution under hydrologic extremes
................................................. 45 2.3.4 Impact of groyne
fields on water residence time ........................... 48 2.4 CONCLUSIONS
......................................................................................
50 ACKNOWLEDGEMENTS
...................................................................................
51 CHAPTER 3
..................................................................................................
52 3\. TEMPORAL-SPATIAL PROPAGATIONS OF HYDROPEAKING: LESSONS LEARNED FROM AN
ALPINE RIVER BASIN ............................ 52 ABSTRACT
....................................................................................................
52 3.1 INTRODUCTION
......................................................................................
53 3.2 METHODS
.............................................................................................
54 3.2.1 Temporal variation
characteristic................................................... 55 3.2.2
Spatial propagation factors analysis
.............................................. 56 3.2.2.1 Landscape
heterogeneity and river segmentation .......................................
56 3.2.2.2 Hydrologic controls on river reach unit
......................................................... 56 3.2.2.3
Geomorphologic controls on hydraulic unit
.................................................. 57 3.3 STUDY AREA AND
DATABASE .................................................................. 59
3.4 RESULTS
..............................................................................................
63 3.4.1 Temporal variation of hydropeaking
.............................................. 63 3.4.2 Spatial variation of
hydropeaking .................................................. 65 3.4.2.1
Landscape segmentation analysis
............................................................... 66 3.4.2.2
River hydrology-controlled river reach
........................................................... 67 3.4.2.3
Geomorphology-controlled river reach
......................................................... 72 3.5 DISCUSSION
.........................................................................................
74 3.5.1 Trade-offs of the two controlling factors
........................................ 74 3.5.2 Hydropeaking variability in
relation with the energy market ........... 76 3.5.3 Thermopeaking variability
under hydropeaking effects ................. 76 3.5.4 Implications for the
local-scale management ................................ 79 3.6 CONCLUSIONS
......................................................................................
79 ACKNOWLEDGEMENTS
...................................................................................
80 CHAPTER 4
..................................................................................................
81 4\. RESPONSE OF WATER TEMPERATURE TO EXTREME HEATWAVES UNDER HYDROPOWER
REGULATION IN THE ALPINE RIVERS ............. 81 ABSTRACT
....................................................................................................
81 5 4.1 INTRODUCTION
......................................................................................
82 4.2 MATERIAL AND METHODS
....................................................................... 84
4.2.1 Study area and dataset
................................................................. 84 4.2.2
Classification of peaked and un-peaked stations .......................... 86
4.2.3 Temperature variability analysis
.................................................... 87 4.2.4 Correlation and
time-lag analysis .................................................. 88 4.2.5
Ecological thermal stress evaluation
............................................. 89 4.3 RESULTS
..............................................................................................
90 4.3.1 RWT variability of peaked and un-peaked stations
....................... 90 4.3.2 Correlation analysis in response to heatwaves
............................. 92 4.3.3 Adaptation period for river water
temperature ............................... 94 4.3.4 Ecological threshold
exceedance .................................................. 95 4.4
DISCUSSION
.........................................................................................
99 4.4.1 Extreme heatwave events mitigation by hydropower ....................
99 4.4.2 Implications for cold-stenotherm river habitat
.............................. 101 4.4.3 Management implications and further
research needs ................ 102 4.5 CONCLUSIONS
....................................................................................
104 ACKNOWLEDGEMENTS
.................................................................................
105 CHAPTER 5
................................................................................................
106 5\. GENERAL CONCLUSIONS
.................................................................. 106 5.1
OVERVIEW OF THE RESEARCH ELEMENTS
.............................................. 106 5.2 SUMMARY OF CHAPTER
CONCLUSIONS .................................................. 108 5.3
IMPLICATIONS FOR RIVER MANAGEMENT
................................................ 110 5.4 RECOMMENDATIONS FOR
FURTHER RESEARCH ...................................... 111 BIBLIOGRAPHY
.........................................................................................
113 A. APPENDIX: SUPPLEMENTARY MATERIALS ....................................
138
dc.description.abstract
Interactive impacts of climate change and human activities (e.g. hydropower
production) have posed urgency in examining the patterns of hydrological and
thermal response in riverine ecosystems, and the potential ecological
implications manifested. Hydro-geomorphic conditions are the major factors in
shaping water qualities in river networks, especially under the extreme
climatic events. However, when the power of nature is encountered with human
regulations, represented by hydropower production, it would be well worth
discussing how the pictures of riverine hydro- and thermal regimes would
change over the certain range of time and space. Moreover, the possible
utility of hydropower regulation as mitigation of extreme climate changes is
still open question to be verified. Above-mentioned questions are answered in
three aspects specifically: \- Governing factors and the spatial distribution
model for water residence time in river networks of Germany. Based on the
machine learning technique of boosted regression trees (BRT), spatial
distribution of water residence time is estimated for the long-term annual
average hydrological conditions and extreme cases of flood and drought. \-
Impacts of hydropower over temporal and spatial range are investigated by
analyzing the mechanisms of hydropeaking propagation. Hydrologic and
geomorphic contribution framework is proposed and applied for the upper Rhone
River basin in Switzerland, a typical hydropower exploited river basin in the
mountainous area. \- River water temperature response as an indication for
ecological status is investigated for the alpine rivers across Switzerland,
excellent representatives of sensitivity and vulnerability to climate change
while under highly exploitation of hydropower activities. Extreme climate
change case of heatwaves in 2003 and 2006 are selected and analysed
especially. Results of the three research components in correspondents to the
listed research questions showed that river hydrological regimes have more
direct influence on the variation of water residence time in comparison with
the geomorphologic settings. Nevertheless, geomorphologic and topologic
conditions (e.g. river width, slope, and roughness coefficient) that largely
control the hydraulic waves diffusion processes in a hydropower-dominated
river basin determine the spatial range of hydropeaking impacts. A hierarchy
framework of geophysical obstructions, hydrology, and hydraulic waves
diffusion process is proposed for analyzing the spatial range of hydropeaking
propagation. When the effects of hydropeaking and thermopeaking are dominated
in the river reach, hydropower regulation offers as great potential to
mitigate extreme climate events (i.e. heatwaves). By looking into specific
perspectives of riverine hydro- and thermal regimes, hydropower regulation,
and climate extremes via different temporal-spatial scales, we investigated
the interactive effects between riverine ecosystem and human-climatic impacts.
We expanded the approach of water residence time estimation into the field of
machine learning with spatial predictions. Impacts of hydropower regulation
are first elaborated with a framework of hydropeaking propagation mechanisms.
Hydropower regulation has been identified to have great potential to mitigate
extreme heatwaves through altering thermal regimes in rivers. Results of the
study not only contribute to river hydrology and ecology studies, but also to
the river management and climate change mitigation practices.
de
dc.description.abstract
Interaktive Auswirkungen des Klimawandels und der menschlichen Aktivitäten
(z.B. Wasserkraft - erzeugung) haben bei der Untersuchung der Muster von Dr
Hydrologische und thermische Reaktion in den Ökosystemen des Flusses und das
Potenzial Ökologische Implikationen manifestieren. Hydro-geomorphe Bedingungen
sind die wichtigsten Faktoren bei der Gestaltung von Wasserqualitäten in
Flussnetzen, vor allem unter der Extreme klimatische Ereignisse. Allerdings,
wenn die Macht der Natur angetroffen wird Mit menschlichen Vorschriften,
vertreten durch Wasserkraft-Produktion, wäre es Lohnt es sich zu diskutieren,
wie die Bilder von Riverine hydro-und thermischen Regimes Würde sich über den
bestimmten Bereich von Zeit und Raum ändern. Darüber hinaus möglich. Nutzen
der Wasserkraftregulierung, da die Eindämmung extremer Klimawandel nach wie
vor besteht Offene Frage überprüft werden. Die oben genannten Fragen werden in
drei Aspekten speziell beantwortet: Einflussfaktoren und das räumliche
Verteilungsmodell für Wasser Verweilzeit in den Flußnetzen Deutschlands.
Basierend auf der Maschine (BRT), räumlich Verteilung der Wasserverweilzeit
wird für die langfristige geschätzt Im Jahresdurchschnitt hydrologische
Bedingungen und extreme Überschwemmungsfälle Und Dürre. Auswirkungen der
Wasserkraft auf den zeitlichen und räumlichen Bereich sind Untersucht durch
die Analyse der Mechanismen der Hydropeaking Vermehrung. Hydrologische und
geomorphe Beitrag Rahmen ist Vorgeschlagen und für das obere Rhone-Becken in
der Schweiz beantragt, Eine typische Wasserkraft ausgebeutet Flussgebiet in
den bergigen Bereich. Flusswassertemperaturreaktion als Indikator für
ökologische Status wird für die alpinen Flüsse in der Schweiz, Ausgezeichnete
Vertreter von Empfindlichkeit und Anfälligkeit gegenüber Klima 2 Unter starker
Ausbeutung von Wasserkraftaktivitäten. Extreme Klimawandel von Hitzewellen in
2003 und 2006 sind Ausgewählt und analysiert. Ergebnisse der drei
Forschungskomponenten in Korrespondenzdatenbanken Forschungsfragen zeigten,
dass der Fluss hydrologische Regime mehr direkte haben Einfluss auf die
Variation der Wasserverweilzeit im Vergleich zur Geomorphologischen
Einstellungen. Trotzdem geomorphologisch und topologisch (Z. B. Flussbreite,
Steigung und Rauheitskoeffizient), die weitgehend Steuern die hydraulischen
Wellen Diffusionsprozesse in einer Wasserkraft-dominiert Flussgebiet bestimmen
die räumliche Reichweite der hydropeaking Auswirkungen. Eine Hierarchie Rahmen
für geophysikalische Hindernisse, Hydrologie und hydraulische Wellen
Diffusionsprozess wird für die Analyse des räumlichen Bereichs der
Hydropeaking vorgeschlagen Vermehrung. Wenn die Auswirkungen der Hydropeaking
und thermopeaking sind Dominiert in der Flussreichweite, bietet die
Wasserkraftregulierung ein großes Potenzial Mildern extreme Klimaereignisse
(d. H. Hitzewellen). Durch die Betrachtung spezifischer Perspektiven des
hydro- und thermischen Flusses Regime, Wasserkraft-Regulierung und Klima-
Extreme über verschiedene Temporal-räumliche Skalen, untersuchten wir die
interaktiven Effekte zwischen Riverine Ökosystem und menschlich-klimatische
Auswirkungen. Wir erweitern den Ansatz von Wasser Verweilzeitschätzung auf dem
Gebiet des maschinellen Lernens mit räumlicher Vorhersagen. Die Auswirkungen
der Wasserkraft - Regulierung werden zunächst mit einem Rahmen der
hydropeaking Ausbreitungsmechanismen. Wasserkraftregulierung Wurde
festgestellt, dass ein großes Potenzial haben, extreme Hitzewellen zu mildern
Durch Veränderung der thermischen Regimes in Flüssen. Ergebnisse der Studie
nicht nur Dazu beitragen, Hydrologie und Ökologie Studien, sondern auch auf
den Fluss Management und Klimaschutzpraktiken.
de
dc.format.extent
VII, 145 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Water residence time
dc.subject
River networks
dc.subject
Climatic extremes
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Flow and thermal regimes in river networks: effects of hydropower regulation
and climate extremes
dc.contributor.contact
meili.feng@unitn.it
dc.contributor.contact
arielfengml@gmail.com
dc.contributor.firstReferee
Prof. Paolo Perona
dc.contributor.furtherReferee
Prof. Donatella Termini
dc.contributor.furtherReferee
Prof. Bertoldi Walter
dc.date.accepted
2016-12-20
dc.date.embargoEnd
2017-01-02
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000103840-3
dc.title.translated
Fluss- und Wärmeregime in Flussnetzen: Auswirkungen der Wasserkraftregulierung
und Klimaextreme
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000103840
refubium.note.author
In terms of discussion of any contents please contact with the author Meili
Feng via arielfengml@gmail.com
refubium.mycore.derivateId
FUDISS_derivate_000000020729
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access