dc.contributor.author
Gabriel, Christian
dc.date.accessioned
2018-06-07T18:54:38Z
dc.date.available
2016-04-27T12:43:10.010Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/5548
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-9747
dc.description
1\. Introduction 1 1.1. The Role of T Cells in the Immune System 1 1.2. The
Activation of T Cells. 2 1.2.1. T Cell Stimulation in vitro 3 1.3. T Cell
Receptor Signaling 3 1.3.1. From T Cell Receptor Stimulation to
Phospholipase-C Activation 3 1.3.2. PKCθ Activation Requires Signaling through
the Co-Receptor 5 1.3.3. Activation of AP1 Family Proteins through the Action
of MAP Kinases 5 1.3.4. The CBM-Complex Governs the Activation of the
Canonical NFκB Pathway in T Cells. 6 1.3.4.1. The CBM-Complex and IKK
Activation 6 1.3.4.2. Post-Translational Modifications Regulate the Activity
of the CBM-complex 9 1.3.4.3. CBM-Complex Defects Lead to Immunodeficiency or
Cancer Development 10 1.3.5. Calcium Signaling Controls the Activation and
Function of NFAT 11 1.3.5.1. Calcium Influx Triggers the Activation of
Calcineurin 11 1.3.5.2. NFAT Proteins in Health and Disease 12 1.3.5.3. The
Family of NFAT Transcription Factors. 12 1.3.5.4. Structure and Regulation of
NFAT Activity 15 1.3.5.5. NFAT Function and Its Interaction with the
Transcription Factor AP1 16 1.3.5.6. In the Absence of AP1 Activation, NFAT
Promotes T Cell Anergy 17 1.3.5.7. Interaction of NFAT with Further
Transcription Factors 18 1.4. Mass Spectrometry to Investigate Protein
Complexes 20 1.4.1. MS in Proteomics: Isotope Labeling 20 1.4.2. Analysis of
Protein Complexes by CoIP-MS 22 1.5. The Jurkat Cell Line 24 1.6. Goals of
this Thesis 25 2\. Material and Methods 26 2.1. Material 26 2.1.1. Cells 26
2.1.2. SILAC Media 26 2.1.3. Vectors and Constructs 26 2.1.4. Chemicals,
Including Peptides and Proteins 28 2.1.5. Pre-made Buffers, Solutions and
Stocks 29 2.1.6. Home-made Buffers and Media 30 2.1.7. Enzymes 31 2.1.8. Kits
32 2.1.9. Antibodies 32 2.1.10. Disposables 33 2.1.11. Hardware 33 2.1.12.
Software 34 2.2. Methods 34 2.2.1. Methods in Cell Biology 34 2.2.1.1. Cell
Stimulation 34 2.2.1.2. SILAC Labeling of Jurkat Cells 34 2.2.1.3.
Nucleofection 34 2.2.1.4. Virus Production 35 2.2.1.5. Establishment of Stably
Transduced Cell Lines by Retroviral Transduction 35 2.2.1.6. Establishment of
Stable Transduced Cell Lines by Nucleofection/Selection 35 2.2.1.7.
Establishment of Knock-out Cell Lines by CRISPR/CAS9 35 2.2.1.8. Proximity
Ligation Assay 36 2.2.2. Methods in Protein Biochemistry 38 2.2.2.1. SDS-PAGE/
Western Blot 38 2.2.2.2. Co-Immunopurification 39 BCL10 Experiments 39 NFAT
Experiments 40 2.2.2.3. MS Measurement 41 2.2.3. Bioinformatic Methods 41
2.2.3.1. Identification of Peak Regions from Public ChIP-Seq Datasets 41
2.2.3.2. Identification of Transcription Factor Binding Site Enrichment 41
2.2.3.3. Identification of Pairs of Transcription Factor Binding Sites 42 3\.
Results 43 3.1. Characterization of the CBM-complex by Mass Spectrometry 43
3.1.1. Generation of a Cell Line that Stably Expresses Epitope-Tagged BCL10 43
3.1.2. Isolation of the CBM-Complex via Epitope-Tagged BCL10 44 3.1.3. Isotope
Labeling of Jurkat Cells using SILAC 45 3.1.4. Mass Spectrometric Analysis of
BCL10 Containing Protein Complexes 46 3.1.5. TRAF2 and HOIP Interact with
BCL10 after TCR Stimulation 49 3.2. Identification of NFAT Interaction
Partners 52 3.2.1. Establishment of Cell Lines that Stably Express Biotin-
Tagged NFAT Proteins 52 3.2.1.1. Choice of Epitope-Tag and Vector System 52
3.2.1.2. Stable Transfection of Jurkat Cells with Epitope-Tagged NFAT Isoforms
54 3.2.2. Characterization of NFAT Overexpressing Cell Lines 56 3.2.2.1.
Cellular Localization of Epitope-Tagged NFAT Proteins 56 3.2.2.2.
Phosphorylation of Epitope-Tagged NFAT Proteins 57 3.2.3. Purification of NFAT
Proteins by the Help of the AVITEV Tag 60 3.2.4. Co-Purification of Known NFAT
Interacting Proteins 61 3.2.5. Mass Spectrometric Analyses of NFAT Containing
Protein Complexes 63 3.2.5.1. Design of CoIP-MS Experiments to Identify
Proteins that Interact with NFAT 63 3.2.5.2. Overview of MS Analyses of NFAT
Containing Protein Complexes 64 3.2.5.3. Protein-Protein Interactions
Involving NFATc1S and NFATc1L 68 3.2.5.4. Protein-Protein Interactions
Involving NFATc2 70 3.2.6. NFATc2 and Ikaros Interact in Primary Human T
Helper Cells after TCR Stimulation 72 3.2.7. NFATc2 Interactions Divide into
DNA-Dependent and DNA-Independent 76 3.2.8. Co-Occurrence of NFAT DNA Binding
Motifs with those of other Transcription Factors 78 3.2.8.1. Binding Motifs
for AP-1 proteins, RUNX and Ets-Factors Are Enriched in Regions of NFAT
Binding 78 3.2.8.2. Pairs of Binding Motifs for NFAT and AP1, CRE and RUNX Are
Found Preferentially in a Distinct Distance and Orientation 80 4\. Discussion
84 4.1. HOIP: A Novel Regulator of the CBM-Complex 84 4.1.1. Isolation of the
CBM-Complex: Known and Suspected Components 84 4.1.2. The LUBAC Constituents
HOIP and HOIL1Associate with the CBM Complex 85 4.1.3. Expression of HOIP Is
Necessary for TCR Induced NFκB Activation and IL-2 Expression 87 4.1.4. The
LUBAC and the CBM: Open Questions 88 4.2. Identification of NFAT Interaction
Partners 91 4.2.1. General Remarks 91 4.2.1.1. Influence of Overexpression and
the Biotin-Tag on NFAT Localization and Phosphorylation 91 4.2.1.2. JUN Is
Likely to Be Cleaved by TEV Protease 92 4.2.1.3. Discrepancy between the
Amount of NFATc1S and NFATc1L Interactors 92 4.2.1.4. Defining a Cut-Off for
Potential and Confident Interactors 93 4.2.1.5. Absence of Proof Is not a
Proof of Absence 94 4.2.1.6. Towards the Confidence and Nature of Suggested
Interactions 94 4.2.1.7. Bioinformatics Suggest Cooperative DNA Binding of
NFAT with RUNX- and CRE-binding Proteins 97 4.2.2. Implications of Selected
Interactions 98 4.2.2.1. CREB1 and NFAT-CRE Binding Motifs 98 4.2.2.2. RUNX
and NFAT: Cooperative DNA Binding? 100 4.2.2.3. Ikaros: Repressor of NFAT
Transactivation? 100 4.2.2.4. IRF2BP1 and IRF2BP2: Two Further Suppressors of
NFATc2 Transactivation? 101 4.2.2.5. SATB1: Chromatin Opening at Sites of NFAT
Binding? 102 4.2.2.6. SCAI, WDR48 and RPTOR: DNA Independent NFAT-Interactors
102 4.2.2.7. CHEK1, NEK6, NEK7 and PLK: Potential NFAT Kinases? 103 4.2.2.8.
14-3-3 Proteins, RANBP9 and CABIN-1: Regulators of NFAT Phosphorylation and
Activation 103 4.2.3. Concluding Remarks 104 4.2.4. Outlook 104
dc.description.abstract
A T cell is activated by the binding of a specific antigen to its T cell
receptor. Subsequently, signaling modules integrate information from the
antigen receptor, environment and cellular background to produce an adequate
outcome. Mechanistically, the activation of diverse transcription factors
drives and shapes the cellular reaction in most cases. The transcription
factors nuclear factor of activated T cells (NFAT) and nuclear factor of κ
light chain enhancer of activated B cells (NFκB) play a pivotal role in T cell
biology. Aberrations in their activation pathways can lead to
immunodeficiency, autoimmune diseases and cancer development. A complex that
consists of CARMA1, BCL10 and MALT1 (CBM-complex) controls the activation of
NFκB following TCR ligation by integrating input from different signaling
pathways (PKCθ, calcineurin). Employing a combination of co-immunopurification
with mass spectrometry, we identified HOIP and HOIL1, two compounds of the
linear ubiquitin assembly complex LUBAC, as so far unknown interactors of
BCL10. We proved that HOIP interacts with BCL10 after TCR stimulation in
Jurkat cells and after PMA/ionomycin stimulation in primary T helper cells.
The presence of HOIP, but not its enzymatic activity, is necessary for
complete NFκB activation after TCR/co-receptor engagement; a finding that was
revealed in recent reports from other groups. Thus, HOIP constitutes a new
potential target to modulate T cell activation. However, it remains unclear
how LUBAC components are recruited to the CBM signaling complex and how they
contribute to the activation of IKK and NFκB. The activation of NFAT
transcription factors is a hallmark of T cell activation and a pre-requisite
for most T cell effector functions. NFAT readily interacts with other
transcription factors. These interactions strongly influence the locus and the
outcome of NFAT binding. Via binding to the IL-2 promoter, NFAT in a complex
with AP1 promotes IL 2 expression, while a complex of NFAT and FOXP3 represses
IL-2 expression. In the absence of interaction partners, NFAT binding to this
locus is not detectable. By combining co-immunopurification with mass
spectrometry, we identified more than 100 potential previously unknown
interaction partners of NFATc1 and NFATc2, including more than 40
transcription factors. We could confirm a range of these interactions in
follow-up experiments, including those with Ikaros, CREB1 and RUNX1.
Additionally, we identified potential common binding motifs of NFAT with these
transcription factors by the use of bioinformatics. Thereby, we found that
dimeric NFAT-RUNX and NFAT-CRE binding motifs are highly enriched within
genomic regions of NFAT binding in activated cytotoxic T cells. Further
experiments, including ChIP-Seq and molecular interaction studies, will reveal
how NFAT concerts T cell functions within different T cell subsets and how
other proteins influence NFAT’s activity to shape the outcome of T cell
activation. This may advance the development of more specific immune-
modulatory treatments.
de
dc.description.abstract
T-Zellen werden durch die Bindung eines spezifischen Antigens über ihren T
-Zell-Rezeptor (TZR) aktiviert. Die vom Antigenrezeptor kommenden Signale
werden in Signalkomplexen verarbeitet, mit zusätzlichen Informationen zu
Umgebung und Zellstatus versehen und integriert, um eine adäquate Reaktion der
Zelle auszulösen. Diese Reaktion wird in vielen Fällen durch die Aktivierung
verschiedener Transkriptionsfaktoren ausgelöst und moduliert. Die
Transkriptionsfaktoren Kernfaktor in aktivierten T-Zellen (NFAT) und
Kernfaktor des κ-Leichtkettenverstärkers in aktivierten B-Zellen (NFκB)
spielen eine entscheidende Rolle bei der T-Zellaktivierung. Anomalien in deren
Regulierung führen zu Immundefekten, Autoimmunerkrankungen und Krebs. Die
NFκB-Aktivierung nach TZR-Stimulation wird vom CBM-Komplex (für
CARMA1-BCL10-MALT1-Komplex) durch die Integration der Einträge verschiedener
Signalwege kontrolliert. Durch Kombination von Co-Immunpräzipitation und
Massenspektrometrie konnten wir die Proteine HOIP und HOIL1, die Teil des
Ubiquitin-Ligase-Komplexes LUBAC sind, als Interaktionspartner von BCL10
identifizieren. Wir konnten zeigen, dass HOIP nach Stimulation sowohl in
Jurkat-Zellen als auch in primären humanen T-Helferzellen mit BCL10
interagiert. Das Vorhandensein von HOIP – nicht aber dessen katalytische
Aktivität – ist für eine komplette NFκB-Aktivierung nach T-Zellaktivierung
essentiell, wie kürzlich erschienene Arbeiten anderer Gruppen offenbart haben.
Somit ist HOIP ein neues potentielles Target zur Modulierung der
T-Zellaktivierung. Unklar ist jedoch weiterhin, wie der LUBAC-Komplex zum CBM-
Komplex rekrutiert wird und wie genau er zur Aktivierung von IKK und NFκB
beiträgt. Die Aktivierung von NFAT-Transkriptionsfaktoren ist Voraussetzung
für die meisten T-Zell-Effektorfunktionen. NFAT interagiert mit anderen
Transkriptionsfaktoren. Diese Interaktionen haben großen Einfluss darauf, an
welchen DNA-Sequenzen NFAT bindet und welche Wirkung diese Bindung hervorruft.
So hat NFAT beispielsweise im IL-2-Promoterbereich zusammen mit AP1 einen
aktivierenden und mit FOXP3 einen inhibierenden Effekt auf die
IL-2-Produktion. In Abwesenheit von Interaktionspartnern ist eine Bindung von
NFAT im IL-2-Promoterbereich hingegen nicht nachweisbar. Durch Kombination von
Co-Immunpräzipitation und Massenspektrometrie konnten wir über 100 bislang
unbekannte, potentielle Interaktionspartner von NFATc1 und NFATc2
identifizieren, darunter mehr als 40 Transkriptionsfaktoren. Einige dieser
Interaktionen (darunter die mit CREB1, RUNX1 und Ikaros) konnten im Laufe
dieser Arbeit verifiziert werden. Zusätzlich haben wir mithilfe
bioinformatischer Methoden potentielle gemeinsame Bindungsstellen dieser
Transkriptionsfaktoren mit NFAT identifiziert. Hierbei zeigte sich, dass in
genomischen Regionen, die von NFAT in aktivierten zytotoxischen T Zellen
gebunden werden, dimere NFAT-RUNX und NFAT-CRE Bindemotive stark gehäuft
auftreten. Weiterführende Experimente wie ChIP-Seq und molekulare
Interaktionsstudien werden das Verständnis dafür schärfen, wie NFAT die T
-Zell-Funktionen in verschiedenen T-Zelltypen moduliert, und wie andere
Proteine die NFAT-Aktivität beeinflussen um die T-Zell-Aktivierung zu
regulieren. Dies könnte die Entwicklung spezifischerer immun-modulierender
Therapien vorantreiben.
de
dc.format.extent
vi, 119, VIII Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
mass spectrometry
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
Analysis of T Cell Receptor-Induced Signaling Modules by Mass Spectrometry:
NFAT Interactions and the CBM-Complex.
dc.contributor.firstReferee
Prof. Dr. Ria Baumgrass
dc.contributor.furtherReferee
Prof. Dr. Rupert Mutzel
dc.date.accepted
2016-04-14
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000101893-4
dc.title.translated
Analyse von T-Zell-Rezeptor-induzierten Signalmodulen: NFAT-Interaktionen und
der CBM-Komplex
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000101893
refubium.mycore.derivateId
FUDISS_derivate_000000019083
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access