dc.contributor.author
O'Neill, Warren
dc.date.accessioned
2018-06-07T18:32:50Z
dc.date.available
2015-01-19T09:39:55.411Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/5152
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-9351
dc.description.abstract
Atmospheric flows are composed of motions occurring on a large range of
temporal and spatial scales. All of these motions can be captured by the
compressible Navier-Stokes equations, however, as sound waves do not play an
important role in these processes, it is theoretically appealing and can be
numerically advantageous to remove the sound waves entirely from the governing
equations. Many ``soundproof'' equation sets have been developed to tackle
this issue. The most well known of these are the Boussinesq equations, the
anelastic equations and and the pseudo-incompressible equations. These
equation sets are derived by introducing different approximations into the
governing equations. The Boussinesq approximation replaces the continuity
equation by an incompressibility condition, the anelastic approximation
disregards the time derivative of the density in the continuity equation to
yield a divergence constraint and the pseudo-incompressible approximation
ignores the effect of pressure perturbations on the density which also yields
a divergence constraint. In this work we will be focusing on the pseudo-
incompressible approximation and we aim to extend this model in two ways. The
first is to numerically implement a ``thermodynamically-consistent''
formulation of the pseudo-incompressible equations and the second is to extend
the model to include moisture, i.e. phase changes and diabatic terms. These
two aspects are outlined in more detail in the following paragraphs.
Typically, the pseudo-incompressible equations are written in ``\pi-\theta''
form i.e., with the Exner pressure \pi and the potential temperature \theta
utilised in the momentum equation's pressure and gravity terms and not
thermodynamic pressure p and the density \rho. An outline for the latter
formulation is given in Klein & Pauluis 2011 and it requires that all terms up
to first order in the pressure perturbation are retained in the momentum
equation which is a condition which is automatically fulfilled in the
``\pi-\theta'' case. This complicates the numerics in two ways: 1) it adds a
pressure perturbation dependent source term to the momentum equation and 2) it
alters the form of the projection step used to enforce the divergence
constraint. A method to resolve these issues will be illustrated in the first
part of the present work. For the remainder we will examine the effect of
moisture on our pseudo-incompressible model. So far only the anelastic
equations have been utilised extensively as a basis for modelling moist flows.
The Boussinesq equations are unsuitable for moist atmospheric applications due
to the assumption of constant density and the pseudo-incompressible equations
are rarely used in moist form due to the complications that latent heat causes
in the divergence constraint. In Almgren et al 2008 a pseudo-incompressible
model with source terms and compositional changes for supernovae is developed
which overcomes these complications. Motivated by this work we have created a
non-thermodynamically consistent pseudo-incompressible model for moist
atmospheric flows. This entailed the derivation of a background state which
varies in time as a result of the release of latent heat. The creation of such
a background state solves the problems created by the heat source in the
divergence constraint and allows the pseudo-incompressible model to
incorporate diabatic terms. This model is valid for flows with large density
and potential temperature variations and is therefore more generally
applicable than the anelastic approximation which is only valid for small
variations. In the analysis presented in Lipps & Helmer 1982, for example,
they require the potential temperature to be a slowly varying function of the
vertical coordinate for their moist anelastic model. If we focus on
atmospheric motions then this restricts the validity of their model to motions
in the troposphere and in this paper they state that ``for severe mid-latitude
convection...the present analysis is expected to have limited validity''.
However, the assumption of small density and potential temperature variations
is valid for most atmospheric processes of interest and our model is
advantageous only in specific cases. We will also develop the moist model to
be thermodynamically consistent. This is carried out in much the same fashion
as in the dry case except the background variables in the gravity term will
now be functions of time as well as height. Moreover, we will examine the
effect of the pressure choice used, full value or hydrostatic, for the
condensation rate calculation. To implement our models numerically we have
incorporated it into an in-house finite volume code for low Mach number flow.
The models are then verified against a number of testcases which are used to
examine various aspects of the interest, e.g. how the model performs under
buoyancy driven flow. In summary, the thesis will have the following outline:
we begin with a derivation, starting from the compressible equations, of the
dry thermodynamically consistent set. This is followed by a derivation of the
moist form of the thermodynamically consistent set. The numerics used for
modelling each set of equations is then outlined and finally each model is
tested and compared using several standard dry and moist testcases.
de
dc.description.abstract
Die Atmosphärenströme definieren sich durch Prozesse auf unterschiedlichsten
zeitlichen wie räumlichen Skalen. Diese Prozesse können mit den
"kompressiblen'' Navier-Stokes Gleichungen modelliert werden. Es ist
anzunehmen, dass eine Nichtberücksichtigung von Schallwellen zu numerischen
Vereinfachungen führt. Dies ist auch von theoretischem Interesse. Speziell
unter schallfreien Bedingungen wurde eine Reihe von Gleichungen entwickelt,
sog. ``schallfreie Gleichungen'', welche das Problem der Schallwellefilterung
lösen. Ein Lösungsweg beschreibt die ``pseudo-inkompressiblen Gleichungen'',
welche der Fokus dieser Arbeit darstellt. Die pseudo-inkompressible Annäherung
definiert die Dichte als eine Funktion von hydrostatischem Druck und
Temperatur. Diese Annäherung resultiert in einer Divergenz-Gleichung, die, im
Gegensatz zur Evolutions-Gleichung, Schalleffekte im Modell vernachlässigbar
macht. Die Studie entwickelt die pseudo-inkompressible Annäherung in zwei
Richtungen weiter: 1) Implementierung einer ``thermodynamisch konsistenten''
Form in die pseudo-inkompressiblen Gleichungen und 2) die Expandierung des
Modellraums, um diabetische Terme und Phasenübergange modellieren zu können.
Die numerische Implementierung der ``thermodynamisch konsistenten'' Form und
der Modellexpandierung stellt eine ``in-house'' Entwicklung von pseudo-
inkompressiblen Finite-Volumen-Routinen dar. Nach der Implementierung werden
standardisierte Teststudien durchgeführt und die Ergebnisse mit anderen
Modellen verglichen.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Pseudo-incompressible equations
dc.subject
Geophysical Fluid Dynamics
dc.subject
Atmospheric Modelling
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::518 Numerische Analysis
dc.title
A thermodynamically consistent formulation of the pseudo-incompressible
equations for atmospheric modelling with an extension to moist processes
dc.contributor.firstReferee
Prof. Dr. Rupert Klein
dc.contributor.furtherReferee
Prof. Dr. Peter Spichtinger
dc.contributor.furtherReferee
Dr. Ann Almgren
dc.date.accepted
2014-12-08
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000098294-6
dc.title.translated
Eine thermodynamisch konsistente Formulierung der pseudo-inkompressiblen
Gleichungen für atmosphärische Modellierung mit einer Erweiterung für feuchte
Prozesse
de
refubium.affiliation
Mathematik und Informatik
de
refubium.mycore.fudocsId
FUDISS_thesis_000000098294
refubium.mycore.derivateId
FUDISS_derivate_000000016407
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access