dc.contributor.author
Cui, Yongxing
dc.contributor.author
Peng, Shushi
dc.contributor.author
Delgado-Baquerizo, Manuel
dc.contributor.author
Moorhead, Daryl L.
dc.contributor.author
Sinsabaugh, Robert L.
dc.contributor.author
Terrer, César
dc.contributor.author
Smith, Thomas P.
dc.contributor.author
Kuzyakov, Yakov
dc.contributor.author
Peñuelas, Josep
dc.contributor.author
Zhu, Biao
dc.contributor.author
Tao, Feng
dc.contributor.author
Hong, Songbai
dc.contributor.author
Chen, Ji
dc.contributor.author
Rillig, Matthias C.
dc.date.accessioned
2026-01-22T14:31:55Z
dc.date.available
2026-01-22T14:31:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51249
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50976
dc.description.abstract
Despite extensive research on soil microbial carbon (C) use efficiency (CUE), its linkage to actual soil C storage remains ambiguous. A key uncertainty is that CUE estimates from short-term labeling incubations assume a linear negative relationship with respiration rates, overlooking nonlinear interactions and long-term microbial acclimation. Here, we use a stoichiometry-based approach to estimate CUE (CUEST), which links soil resource availability to microbial demand and captures microbial adaptability under resource constraints. We synthesized 1094 paired observations of CUEST and heterotrophic respiration rate (Rh) across natural ecosystems and found a nonlinear relationship between them governed by ecosystem productivity. In low-productivity arid and cold regions, CUEST declined with increasing Rh, whereas in productive tropical and temperate regions, CUEST stabilized at a low level (0.27 ± 0.11) as Rh exceeded 340 ± 10.8 grams of C per square meter per year. This shift reflects microbial trade-offs between C assimilation and stoichiometric homeostasis, revealing a decoupling of microbial growth from respiration that limits the capacity of productive ecosystems to store additional soil C.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
soil microbial
en
dc.subject
carbon use efficiency
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Productivity-driven decoupling of microbial carbon use efficiency and respiration across global soils
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
108618
dcterms.bibliographicCitation.articlenumber
eadz5319
dcterms.bibliographicCitation.doi
10.1126/sciadv.adz5319
dcterms.bibliographicCitation.journaltitle
Science Advances
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
American Association for the Advancement of Science (AAAS)
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.volume
12 (2026)
dcterms.bibliographicCitation.url
https://doi.org/10.1126/sciadv.adz5319
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.funding
Publikationsfonds FU
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2375-2548