dc.contributor.author
Grech, Leander
dc.contributor.author
Krauss, Matthias G.
dc.contributor.author
Consiglio, Mirko
dc.contributor.author
Apollaro, Tony J. G.
dc.contributor.author
Koch, Christiane P.
dc.contributor.author
Hirlaender, Simon
dc.contributor.author
Valentino, Gianluca
dc.date.accessioned
2026-01-22T09:59:04Z
dc.date.available
2026-01-22T09:59:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51247
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50974
dc.description.abstract
Noisy intermediate-scale quantum computers hold the promise of tackling complex and otherwise intractable computational challenges through the massive parallelism offered by qubits. Central to realizing the potential of quantum computing are perfect entangling (PE) two-qubit gates, which serve as a critical building block for universal quantum computation. In the context of quantum optimal control, shaping electromagnetic pulses to drive quantum gates is crucial for pushing gate performance toward theoretical limits. In this work, we leverage reinforcement learning (RL) techniques to discover near-optimal pulse shapes that yield PE gates. A collection of RL agents is trained within robust simulation environments, enabling the identification of effective control strategies even under noisy conditions. Selected agents are then validated on higher-fidelity simulations, illustrating how RL-based methods can reduce calibration overhead when compared to quantum optimal control techniques. Furthermore, the RL approach is hardware agnostic with the potential for broad applicability across various quantum computing platforms.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
reinforcement learning
en
dc.subject
quantum optimal control
en
dc.subject
transmon qubits
en
dc.subject
NISQ computers
en
dc.subject
quantum speed limit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Achieving fast and robust perfect entangling gates via reinforcement learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
015030
dcterms.bibliographicCitation.doi
10.1088/2058-9565/ae2c16
dcterms.bibliographicCitation.journaltitle
Quantum Science and Technology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2058-9565/ae2c16
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2058-9565
refubium.resourceType.provider
WoS-Alert