dc.contributor.author
Peña, Carlos
dc.contributor.author
Heidbach, Oliver
dc.contributor.author
Metzger, Sabrina
dc.contributor.author
Schurr, Bernd
dc.contributor.author
Moreno, Marcos
dc.contributor.author
Bedford, Jonathan
dc.contributor.author
Oncken, Onno
dc.contributor.author
Faccenna, Claudio
dc.date.accessioned
2026-01-14T13:54:59Z
dc.date.available
2026-01-14T13:54:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51114
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50841
dc.description.abstract
Upper-plate aftershocks following megathrust earthquakes are particularly dangerous as they may occur close to densely populated regions. Aftershock numbers decay with time, imposing a time-dependent seismic hazard that is assessed with statistical forecast models. While coseismic static stress transfer cannot explain this time-dependency, transient postseismic deformation due to afterslip, viscoelastic relaxation, and pore-pressure diffusion are potential candidates. Here we demonstrate which postseismic process is the key driver of the upper-plate aftershocks pattern following the 2014 Mw = 8.2 Iquique earthquake in northern Chile. We first use a 4D (space and time) model approach to reproduce the postseismic deformation observed in geodetic data. We then analyze the spatiotemporal stress changes produced by individual postseismic processes and compare them to the upper-plate aftershocks distribution. Our results reveal that stress changes produced by coseismically-induced pore-pressure diffusion best correlate in space and time with increased upper-plate aftershock activity. Moreover, an increase in pore-pressure reduces the three effective principal stress magnitudes likewise. Hence, all faults, regardless of their orientations, are brought closer to failure. This explains the higher diversity of the aftershocks faulting styles. Our findings provide further insights into the link between pore-pressure diffusion and upper-plate deformation in subduction zones and provide grounds for a physics-based aftershock forecast.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Hydrogeology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Pore-pressure diffusion controls upper-plate aftershocks of the 2014 Iquique earthquake
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9474
dcterms.bibliographicCitation.doi
10.1038/s41467-025-65013-6
dcterms.bibliographicCitation.journaltitle
Pore-pressure diffusion controls upper-plate aftershocks of the 2014 Iquique earthquake
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-65013-6
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Tektonik und Sedimentäre Systeme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert