dc.contributor.author
Liu, Jun
dc.contributor.author
Rosenau, Matthias
dc.contributor.author
Brune, Sascha
dc.contributor.author
Kosari, Ehsan
dc.contributor.author
Rudolf, Michael
dc.contributor.author
Oncken, Onno
dc.date.accessioned
2026-01-14T13:49:36Z
dc.date.available
2026-01-14T13:49:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51113
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50840
dc.description.abstract
Triaxial deformation is a general feature of continental tectonics, but its controls and the systematics of associated fault networks remain poorly understood. We present triaxial analog experiments mimicking crustal thinning resulting from distributed longitudinal extension and lateral shortening. Contemporary longitudinal extension and lateral shortening are related by the principal horizontal strain ratio (PHSR). We investigate the effect of crustal geometry, rheology and strain rate on deformation localization, faulting regime and pattern, and PHSR in brittle and brittle-viscous crustal-scale models. We find that in brittle models the fault networks reflect the basal boundary condition and fault-density scales inversely with brittle layer thickness. In brittle-viscous models, as strain rate (ė) decreases, (a) Three fault patterns emerge: conjugate sets of strike-slip faults (ė > 3 × 10−4 s−1, PHSR > 0.31), sets of parallel oblique normal faults (ė = 0.3–3 × 10−4 s−1, PHSR = 0.15–0.25), horst-and-graben system (ė < 0.3 × 10−4 s−1, PHSR < 0.1). (b) The strain localization increases systematically and gradually. We interpret the strain rate dependent of faulting regimes to be controlled by vertical coupling between the model upper mantle and model upper crust resulting in spontaneous permutation of principal stress axes. Rate-dependency of strain localization can be related to mechanical coupling between the upper and lower crust. We identify the following parameters controlling triaxial tectonic deformation: upper crustal thickness and friction coefficient, lower crustal thickness and viscosity, as well as strain rate. We test our models and predictions against natural prototypes (Tibet, Anatolia, Apennines, and Basin and Range Province) thus providing new perspectives on triaxial deformation.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
analog modeling
en
dc.subject
fault networks
en
dc.subject
triaxial tectonics
en
dc.subject
principal horizontal strain ratio
en
dc.subject
distributed deformation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Fault Networks in Triaxial Tectonic Settings: Analog Modeling of Distributed Continental Extension With Lateral Shortening
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023TC008127
dcterms.bibliographicCitation.doi
10.1029/2023TC008127
dcterms.bibliographicCitation.journaltitle
Tectonics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
43
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023TC008127
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Tektonik und Sedimentäre Systeme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1944-9194
refubium.resourceType.provider
WoS-Alert