dc.contributor.author
Liu, Jun
dc.contributor.author
Rosenau, Matthias
dc.contributor.author
Kosari, Ehsan
dc.contributor.author
Brune, Sascha
dc.contributor.author
Zwaan, Frank
dc.contributor.author
Oncken, Onno
dc.date.accessioned
2026-01-14T13:42:48Z
dc.date.available
2026-01-14T13:42:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51112
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50839
dc.description.abstract
Extensional tectonic settings may undergo time-dependent kinematic changes, causing a multiphase evolution of the resulting fault networks. Yet, the spatial and temporal evolution of fault networks during triaxial and biaxial strain remains underexplored. Here we present scaled analogue models to investigate fault geometry, activity, and patterns across multiple phases of triaxial (constrictional) and biaxial (plane) strain. Our models show that (a) during the shift from biaxial to triaxial strain, first-phase normal faults are fully reactivated and new conjugate sets of oblique-slip faults develop during the subsequent triaxial phase. (b) During the shift from triaxial to biaxial strain, first-phase conjugate sets of oblique-slip faults either become inactive or are partly reactivated, while being cut across and linked up by new faults during subsequent biaxial strain. Our results illustrate kinematic interactions within multiphase fault networks, showing how perturbations in stress domains control the geometry of new faults and how earlier dominant faults create mechanical obstacles that hinder fault propagation. Finally, we compare the fault network evolution in our models to natural examples. The transition from biaxial to triaxial strain reflects the two-phase deformation observed in the Aegean Sea, where pre-existing normal faults were reactivated and new oblique-slip normal faults developed. Similarly, a shift from triaxial to biaxial strain explains the faulting patterns in the Barents Sea during the Late Mesozoic to Early Cenozoic, which exhibit abandoned, reactivated, and newly developed faults.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
anlogue modeling
en
dc.subject
multiphase triaxial and biaxial strain
en
dc.subject
the evolution of fault networks
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
The Evolution of Fault Networks During Multiphase Triaxial and Biaxial Strain: An Analogue Modeling Approach
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2025JB031180
dcterms.bibliographicCitation.doi
10.1029/2025JB031180
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Solid Earth
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
130
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2025JB031180
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Tektonik und Sedimentäre Systeme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-9356
refubium.resourceType.provider
WoS-Alert