dc.contributor.author
Hase, Valerie
dc.contributor.author
Bachl, Marko
dc.contributor.author
Teblunthuis, Nathan
dc.date.accessioned
2026-01-12T13:36:28Z
dc.date.available
2026-01-12T13:36:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51051
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50778
dc.description.abstract
Computational Social Science (CSS) increasingly engages in critical discussions about bias in and through computational methods. Two developments drive this shift: first, the recognition of bias as a societal problem, as flawed CSS methods in socio-technical systems can perpetuate structural inequalities; and second, the field’s growing methodological resources, which create not only the opportunity but also the responsibility to confront bias. In this editorial to our Special Issue on CSS and bias, we introduce the contributions and outline a research agenda. In defining bias, we emphasize the importance of embracing epistemological pluralism while balancing the need for standardization with methodological diversity. Detecting bias requires stronger integration of bias detection into validation procedures and the establishment of shared metrics and thresholds across studies. Finally, addressing bias involves adapting established and emerging error-correction strategies from social science traditions to CSS, as well as leveraging bias as an analytical resource for revealing structural inequalities in society. Moving forward, progress in defining, detecting, and addressing bias will require both bottom-up engagement by researchers and top-down institutional support. This Special Issue positions bias as a central theme in CSS – one that the field now has both the tools and the obligation to address.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational Social Science
en
dc.subject
computational methods
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::070 Publizistische Medien, Journalismus, Verlagswesen::070 Publizistische Medien, Journalismus, Verlagswesen
dc.title
Critical, but constructive: defining, detecting, and addressing bias in Computational Social Science
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/19312458.2025.2575468
dcterms.bibliographicCitation.journaltitle
Communication Methods and Measures
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
281
dcterms.bibliographicCitation.pageend
293
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1080/19312458.2025.2575468
refubium.affiliation
Politik- und Sozialwissenschaften
refubium.affiliation.other
Institut für Publizistik- und Kommunikationswissenschaft

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1931-2466
refubium.resourceType.provider
WoS-Alert