dc.contributor.author
Gurieva, G.
dc.contributor.author
Többens, D. M.
dc.contributor.author
Manjon Sanz, A.
dc.contributor.author
Rotaru, V.
dc.contributor.author
Hennig, C.
dc.contributor.author
Kirkham, M.
dc.contributor.author
Guc, M.
dc.contributor.author
Schorr, S.
dc.date.accessioned
2026-01-12T12:16:19Z
dc.date.available
2026-01-12T12:16:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51045
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50772
dc.description.abstract
Developing low-cost, sustainable, and environmentally friendly top absorber layers for tandem solar cells is essential to advancing photovoltaic technologies and accelerating the transition to renewable energy. In this work, we explore the potential of tetravalent (Cu2Zn(GexSi1−x)Se4) cation mutations in chalcogenide compound semiconductors with the aim of finding a material with increased band gap and reduced structural disorder. A combination of high-resolution synchrotron powder diffraction and neutron powder diffraction was used to determine the atomic positions and monoclinic angles in monoclinic wurtz–kesterite type Cu2Zn(GexSi1−x)Se4 mixed crystals as well as to determine the cation distribution in the crystal structure of Ge-rich kesterite-type and Si-rich wurtz–kesterite type mixed crystals. These investigations enabled us to deduce the structural transition scenario within the Cu2Zn(GexSi1−x)Se4 series. The transition occurs via a region where two phases with different crystal structures, tetragonal and monoclinic and thus a different distortion of the coordination tetrahedra, but the same cation distribution within the element specific cation sites co-exist. Thus, the structural transition between the kesterite and the wurtz–kesterite structure within the Cu2Zn(GexSi1−x)Se4 series is a distortion driven transition. The study identifies cation mutation in quaternary chalcogenides as a promising strategy beyond chalcopyrites and kesterites for low cost and environmentally friendly top absorbers in tandem solar cells.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Crystal structure
en
dc.subject
tetravalent cation mutations
en
dc.subject
chalcogenide compound semiconductors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Crystal structure of Cu2Zn(GexSi1−x)Se4 solid solution: the kesterite to wurtz–kesterite structural phase transition
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2026-01-09T13:06:08Z
dcterms.bibliographicCitation.doi
10.1039/D5TA06163F
dcterms.bibliographicCitation.journaltitle
Journal of Materials Chemistry A
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
1770
dcterms.bibliographicCitation.pageend
1781
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D5TA06163F
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2050-7488
dcterms.isPartOf.eissn
2050-7496
refubium.resourceType.provider
DeepGreen