dc.contributor.author
Tornquist, Sven
dc.contributor.author
Thimm, Matthias
dc.contributor.author
Weinberg, Kerstin
dc.contributor.author
Wieners, Christian
dc.contributor.author
Thomas, Marita
dc.date.accessioned
2026-01-12T09:46:40Z
dc.date.available
2026-01-12T09:46:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/51039
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50766
dc.description.abstract
We investigate the evolution of dynamic phase-field fracture in the finite-strain setting, extending our previous work in the small-strain viscoelastodynamic regime. The elastodynamic equations are coupled with a dissipative damage evolution for the phase-field variable 𝑧. The material response is described with a polyconvex stored energy density 𝑊 =𝑊 ( 𝑧,𝐅 ,𝐇 , 𝐽) , where 𝐅 denotes the gradient of the deformation, 𝐇 its cofactor, and 𝐽its determinant. This ensures compatibility with the principles of nonlinear elasticity. A fully discrete time-staggered approximation scheme is proposed, along with associated stability of discrete solutions. We present compactness results and analyze the convergence of the discrete approximations. While convergence of the phase-field variable and the compatibility of the kinematic variables can be demonstrated, the identification of the limit stress in the momentum balance remains open. To address this, two strategies are outlined: an extension of the classical (weak) framework using generalized Young or defect measures, and an alternative formulation via energetic-variational solutions that avoids the explicit measure construction. Partial results on existence and the structure of the limit system are discussed.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dynamic phase-field fracture
en
dc.subject
finite-strain setting
en
dc.subject
investigation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Toward Dynamic Phase-Field Fracture at Finite Strains
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e70054
dcterms.bibliographicCitation.doi
10.1002/pamm.70054
dcterms.bibliographicCitation.journaltitle
Proceedings in Applied Mathematics & Mechanics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pamm.70054
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
DEAL Wiley
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1617-7061