dc.contributor.author
Kroll, Jana
dc.contributor.author
Kravčenko, Uljana
dc.contributor.author
Sadeghi, Mohsen
dc.contributor.author
Diebolder, Christoph A.
dc.contributor.author
Ivanov, Lia
dc.contributor.author
Lubas, Małgorzata
dc.contributor.author
Sprink, Thiemo
dc.contributor.author
Schacherl, Magdalena
dc.contributor.author
Kudryashev, Mikhail
dc.contributor.author
Rosenmund, Christian
dc.date.accessioned
2025-12-18T06:56:12Z
dc.date.available
2025-12-18T06:56:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50874
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50601
dc.description.abstract
Synaptic vesicle (SV) fusion is not only tightly coordinated but also happens at a millisecond timescale. Competing models for fusion initiation and propagation suggest tight docking and hemifusion of SVs or localized lipid rearrangements leading to tip-like membrane contacts. Yet, a direct nanoscale examination of the full SV fusion sequence has been lacking. Here, we establish a workflow for timed in situ cryo-electron tomography of optogenetically stimulated mouse neurons to capture the complete SV fusion sequence – from SV recruitment to fusion pore formation, opening and collapse – with near-native structural preservation. Notably, tethered SVs directly undergo fusion initiation via stalk formation, without preceding tight docking or SV flattening. The plasma membrane forms a minimal dimple during fusion initiation, contradicting preceding models that invoke strong membrane bending prior to fusion. In addition, we observe filaments linking fusing SVs to adjacent SVs, indicating a physical link between fusion and SV resupply.
en
dc.format.extent
17 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Cellular neuroscience
en
dc.subject
Cryoelectron tomography
en
dc.subject
Membrane fusion
en
dc.subject
Synaptic vesicle exocytosis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Dynamic nanoscale architecture of synaptic vesicle fusion in mouse hippocampal neurons
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-12-17T18:14:59Z
dcterms.bibliographicCitation.articlenumber
11131
dcterms.bibliographicCitation.doi
10.1038/s41467-025-67291-6
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-67291-6
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen