dc.contributor.author
Huo, Wenjie
dc.contributor.author
Schmies, Lennart
dc.contributor.author
Gumenyuk, Andrey
dc.contributor.author
Rethmeier, Michael
dc.contributor.author
Wolter, Katinka
dc.date.accessioned
2025-12-16T07:55:19Z
dc.date.available
2025-12-16T07:55:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50851
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50578
dc.description.abstract
With the advancement of machine learning, many predictions and measurements in visual tasks can be achieved by convolutional neural networks (CNNs). Solidification hot cracking is a significant defect in laser beam welding, commonly encountered in practical applications. Existing theories indicate that the formation of cracks is closely related to strain accumulation near the solidification front. In this paper, we first leverage supervised regression networks to design CNNs that achieve real-time average strain estimation for each frame in the collected welding videos. Two different architectures are proposed and compared: the first model stacks two frames at a set interval and feeds them into the network, while the second model extracts image features individually and predicts the results by calculating the correlation between them. Each network has its own advantages in terms of computational efficiency and accuracy. Finally, we further train a multilayer perceptron (MLP) classification model that can detect the occurrence of cracks based on the predicted strain behaviors.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Laser beam welding
en
dc.subject
Mean strain prediction
en
dc.subject
Solidification cracking detection
en
dc.subject
Convolutional neural networks
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Prediction of mean strain from laser beam welding images and detection of defects via strain curves based on machine learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
113975
dcterms.bibliographicCitation.doi
10.1016/j.optlastec.2025.113975
dcterms.bibliographicCitation.journaltitle
Optics & Laser Technology
dcterms.bibliographicCitation.number
F
dcterms.bibliographicCitation.volume
192
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.optlastec.2025.113975
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1879-2545
refubium.resourceType.provider
WoS-Alert