dc.contributor.author
Chemnitz, Robin
dc.contributor.author
Engel, Maximilian
dc.contributor.author
Olicón-Méndez, Guillermo
dc.date.accessioned
2025-12-16T07:48:51Z
dc.date.available
2025-12-16T07:48:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50850
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50577
dc.description.abstract
We study the synchronization behavior of discrete-time Markov chains on countable state spaces. Representing a Markov chain in terms of a random dynamical system, which describes the collective dynamics of trajectories driven by the same noise, allows for the characterization of synchronization via random attractors.
We establish the existence and uniqueness of a random attractor under mild conditions and show that forward and pullback attraction are equivalent in our setting. Additionally, we provide a sufficient condition for reaching the random attractor, or synchronization respectively, in a time of finite mean.
By introducing insulated and synchronizing sets, we structure the state space with respect to the synchronization behavior and characterize the size of the random attractor.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Markov chains
en
dc.subject
random dynamical systems
en
dc.subject
random attractors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Random attractors on countable state spaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
127
dcterms.bibliographicCitation.doi
10.1214/25-EJP1384
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Probability
dcterms.bibliographicCitation.volume
30
dcterms.bibliographicCitation.url
https://doi.org/10.1214/25-EJP1384
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1083-6489
refubium.resourceType.provider
WoS-Alert