dc.contributor.author
Kaiser, Tim
dc.contributor.author
Herzog, Philipp
dc.date.accessioned
2025-12-16T07:41:11Z
dc.date.available
2025-12-16T07:41:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50849
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50576
dc.description.abstract
Statistical prediction models are ubiquitous in psychological research and practice. Increasingly, machine-learning models are used. Quantifying the uncertainty of such predictions is rarely considered, partly because prediction intervals are not defined for many of the algorithms used. However, generating and reporting prediction models without information on the uncertainty of the predictions carries the risk of overinterpreting their accuracy. Conventional methods for prediction intervals (e.g., those defined for ordinary least squares regression) are sensitive to violations of several distributional assumptions. In this tutorial, we introduce conformal prediction, a model-agnostic, distribution-free method for generating prediction intervals with guaranteed marginal coverage, to psychological research. We start by introducing the basic rationale of prediction intervals using a motivating example. Then, we proceed to conformal prediction, which is illustrated in three increasingly complex examples using publicly available data and R code.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
machine learning
en
dc.subject
open materials
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
A Tutorial on Distribution-Free Uncertainty Quantification Using Conformal Prediction
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
25152459251380452
dcterms.bibliographicCitation.doi
10.1177/25152459251380452
dcterms.bibliographicCitation.journaltitle
Advances in Methods and Practices in Psychological Science
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1177/25152459251380452
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Methoden und Evaluation/Qualitätssicherung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2515-2467
refubium.resourceType.provider
WoS-Alert