dc.contributor.author
Serin, Emin
dc.contributor.author
Ritter, Kerstin
dc.contributor.author
Schumann, Gunter
dc.contributor.author
Banaschewski, Tobias
dc.contributor.author
Marquand, Andre
dc.contributor.author
Walter, Henrik
dc.contributor.author
Schepanski, Kerstin
dc.date.accessioned
2025-12-15T12:43:16Z
dc.date.available
2025-12-15T12:43:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50844
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50571
dc.description.abstract
Task-based functional magnetic resonance imaging (fMRI) reveals individual differences in neural correlates of cognition but faces scalability challenges due to cognitive demands, protocol variability, and limited task coverage in large datasets. Here, we propose DeepTaskGen, a deep-learning approach that synthesizes non-acquired task-based contrast maps from resting-state (rs-) fMRI. We validate this approach using the Human Connectome Project lifespan data, then generate 47 contrast maps from 7 different cognitive tasks for over 20,000 individuals from UK Biobank. DeepTaskGen outperforms several benchmarks in generating synthetic task-contrast maps, achieving superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We further show comparable or superior predictive performance of synthetic maps relative to actual maps and rs-connectomes across diverse demographic, cognitive, and clinical variables. This approach facilitates the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.
en
dc.format.extent
15 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational neuroscience
en
dc.subject
Predictive markers
en
dc.subject
population neuroscience
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Generating synthetic task-based brain fingerprints for population neuroscience using deep learning
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-12-12T07:16:46Z
dcterms.bibliographicCitation.doi
10.1038/s42003-025-09158-6
dcterms.bibliographicCitation.doi
10.1038/s42003-025-09158-6
dcterms.bibliographicCitation.journaltitle
Communications Biology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42003-025-09158-6
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2399-3642
refubium.resourceType.provider
DeepGreen