dc.contributor.author
Prabhu, Gurpur Rakesh D.
dc.contributor.author
Götze, Michael
dc.contributor.author
Greis, Kim
dc.contributor.author
Torres-Boy, América Y.
dc.contributor.author
Safferthal, Marc
dc.contributor.author
Strzelecka, Dominika
dc.contributor.author
Kirschbaum, Carla
dc.contributor.author
Deshpande, Nimish D.
dc.contributor.author
Geue, Niklas
dc.contributor.author
Meijer, Gerard
dc.contributor.author
Helden, Gert von
dc.contributor.author
Pagel, Kevin
dc.date.accessioned
2025-12-11T07:29:58Z
dc.date.available
2025-12-11T07:29:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50801
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50528
dc.description.abstract
Ultraviolet (UV) exposure induces cross-linked pyrimidine dimers in nucleic acids, primarily forming cyclobutane pyrimidine dimers and 6–4 pyrimidine–pyrimidone adducts. These photoproducts exist in multiple isomeric forms, and various dimeric combinations involving thymine, cytosine, and uracil have been documented since the 1960s. Mass spectrometry (MS) has been pivotal in identifying these species, although condensed-phase spectroscopy remains essential for full structural elucidation. This study integrates MS with gas-phase infrared (IR) spectroscopy to obtain vibrational spectra (800–1900 cm–1) of UV-induced photoproducts from mono- and dinucleotides. Following nanoelectrospray ionization and in-source collision-induced dissociation, fragment ions─commonly used in tandem MS experiments to identify the photoproducts─are embedded in superfluid helium clusters at 0.37 K to measure high-resolution IR action spectra. These spectra are then compared with density functional theory-calculated spectra of various candidate isomers to facilitate structural assignment without reference standards. This combined approach enables detailed characterization of complex, low-abundance biomolecules beyond the reach of conventional MS.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Infrared light
en
dc.subject
Infrared spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Cryogenic Gas-Phase Infrared Ion Spectroscopy of Ultraviolet-Induced Nucleotide Photoproducts
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-12-10T11:19:04Z
dcterms.bibliographicCitation.doi
10.1021/acs.analchem.5c05815
dcterms.bibliographicCitation.journaltitle
Analytical Chemistry
dcterms.bibliographicCitation.number
48
dcterms.bibliographicCitation.pagestart
26868
dcterms.bibliographicCitation.pageend
26876
dcterms.bibliographicCitation.volume
97
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.analchem.5c05815
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0003-2700
dcterms.isPartOf.eissn
1520-6882
refubium.resourceType.provider
DeepGreen