dc.contributor.author
Flinth, Axel
dc.contributor.author
Roth, Ingo
dc.contributor.author
Wunder, Gerhard
dc.date.accessioned
2025-12-05T06:20:44Z
dc.date.available
2025-12-05T06:20:44Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50631
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50358
dc.description.abstract
The hierarchical sparsity framework , and in particular the HiHTP algorithm(Hierarchical Hard Thresholding Pursuit), has been successfully applied to many relevant communication engineering problems recently, particularly when the signal space is hierarchically structured. In this paper, the applicability of the HiHTP algorithm for solving the bi-sparse blind deconvolution problem is studied. The bi-sparse blind deconvolution setting here consists of recovering hand bfrom the knowledge of h∗(Qb), where Qis some linear operator, and both band hare assumed to be sparse. The approach rests upon lifting the problem to a linear one, and then applying HiHTP, through the hierarchical sparsity framework . Then, for a Gaussian draw of the random matrix Q, it is theoretically shown that an s-sparse h∈Kμand σ-sparse b∈Knwith high probability can be recovered when μ≳slog(s)2log(μ)log(μn)+sσlog(n).
en
dc.format.extent
34 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Blind deconvolution
en
dc.subject
Restricted isometry property
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Bisparse blind deconvolution through hierarchical sparse recovery
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-12-05T02:27:59Z
dcterms.bibliographicCitation.articlenumber
58
dcterms.bibliographicCitation.doi
10.1007/s10444-025-10271-7
dcterms.bibliographicCitation.journaltitle
Advances in Computational Mathematics
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
51
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10444-025-10271-7
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1019-7168
dcterms.isPartOf.eissn
1572-9044
refubium.resourceType.provider
DeepGreen