dc.contributor.author
Silveira, Andreia
dc.contributor.author
Greving, Imke
dc.contributor.author
Longo, Elena
dc.contributor.author
Scheel, Mario
dc.contributor.author
Weitkamp, Timm
dc.contributor.author
Fleck, Claudia
dc.contributor.author
Shahar, Ron
dc.contributor.author
Zaslansky, Paul
dc.date.accessioned
2025-12-04T17:09:46Z
dc.date.available
2025-12-04T17:09:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50628
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50355
dc.description.abstract
Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by 'error loss' and 'accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Zernike phase contrast
en
dc.subject
X-ray nanotomography
en
dc.subject
deep learning
en
dc.subject
computer-aided image segmentation
en
dc.subject
lacuna-canalicular network
en
dc.subject
Sensor3D model
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Deep learning to overcome Zernike phase-contrast nanoCT artifacts for automated micro-nano porosity segmentation in bone
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1107/s1600577523009852
dcterms.bibliographicCitation.journaltitle
Journal of Synchrotron Radiation
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
International Union of Crystallography (IUCr)
dcterms.bibliographicCitation.pagestart
136
dcterms.bibliographicCitation.pageend
149
dcterms.bibliographicCitation.volume
31
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
38095668
dcterms.isPartOf.eissn
1600-5775