dc.contributor.author
Bonneau, Klara
dc.contributor.author
Lederer, Jonas
dc.contributor.author
Templeton, Clark
dc.contributor.author
Rosenberger, David
dc.contributor.author
Giambagli, Lorenzo
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2025-12-02T09:32:46Z
dc.date.available
2025-12-02T09:32:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50560
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50287
dc.description.abstract
Machine learned potentials based on artificial neural networks are becoming a popular tool to define an effective energy model for complex systems, either incorporating electronic structure effects at the atomistic resolution, or effectively renormalizing part of the atomistic degrees of freedom at a coarse-grained resolution. One main criticism regarding neural network potentials is that their inferred energy is less interpretable than in traditional approaches, which use simpler and more transparent functional forms. Here we address this problem by extending tools recently proposed in the nascent field of explainable artificial intelligence to coarse-grained potentials based on graph neural networks. With these tools, neural network potentials can be practically decomposed into n-body interactions, providing a human understandable interpretation without compromising predictive power. We demonstrate the approach on three different coarse-grained systems including two fluids (methane and water) and the protein NTL9. The obtained interpretations suggest that well-trained neural network potentials learn physical interactions, which are consistent with fundamental principles.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Chemical physics
en
dc.subject
Computational biophysics
en
dc.subject
Computational chemistry
en
dc.subject
Computational science
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Peering inside the black box by learning the relevance of many-body functions in neural network potentials
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9898
dcterms.bibliographicCitation.doi
10.1038/s41467-025-65863-0
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-65863-0
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723