dc.contributor.author
Fiedler, Bernold
dc.date.accessioned
2025-12-02T08:33:48Z
dc.date.available
2025-12-02T08:33:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50368
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50094
dc.description.abstract
Inspired by pioneering work of Kyûya Masuda in the 1980s, only much more recent
PDE studies address global boundedness versus finite-time blow-up in complex
time. The two phenomena are related by passage from real to purely imaginary
time. As a most simplistic ODE example, we study scalar rational vector fields
w˙ = P(w)/Q(w) , (∗)
for complex polynomials P, Q. We impose mild generic nondegeneracy conditions,
including simplicity of poles and hyperbolicity of zeros. Generically, the real-time
dynamics then become gradient-like Morse. Poles play the role of hyperbolic saddle
points. At poles, however, solutions may blow up in finite time. On the Riemann
sphere w ∈ C
, we classify the resulting global dynamics up to C0 orbit equivalence,
in real time. This relies on a global description of the connection graph of blow-up
orbits, from sources towards saddles/poles, in forward time. Time reversal identifies
the dual graph of blow-down orbits. We show that the blow-up and blow-down
graphs of (*) on C
realize all finite multi-graphs on S2, equivalently. The purely
polynomial case Q = 1 realizes all planar trees, alias diagrams of non-intersecting
circle chords. The anti-holomorphic cousin P = 1 realizes all noncrossing trees with
vertices restricted to circles. This classification provides combinatorial counts for
the number of global phase portraits, which only depend on the degrees of P and Q,
respectively.
en
dc.format.extent
63 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Connection graphs
en
dc.subject
Dynamics on Riemann Sphere
en
dc.subject
Chord graphs
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Real-time blow-up and connection graphs of rational vector fields on the Riemann sphere
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s13160-025-00749-8
dcterms.bibliographicCitation.journaltitle
Japan Journal of Industrial and Applied Mathematics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1499
dcterms.bibliographicCitation.pageend
1561
dcterms.bibliographicCitation.volume
42
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s13160-025-00749-8
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1868-937X