dc.contributor.author
Craddock, Maxwell L.
dc.contributor.author
Sekine, Yasuhito
dc.contributor.author
Napoleoni, Maryse
dc.contributor.author
Khawaja, Nozair
dc.contributor.author
Tan, Shuya
dc.contributor.author
Li, Yamei
dc.contributor.author
Yang, Zening
dc.contributor.author
Hortal Sánchez, Lucía
dc.contributor.author
Yi, Ruiqin
dc.contributor.author
Postberg, Frank
dc.date.accessioned
2025-11-14T08:23:19Z
dc.date.available
2025-11-14T08:23:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50358
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50084
dc.description.abstract
In-situ observations of Enceladus' plume and Saturn's E ring by the Cassini spacecraft have revealed that some ice particles erupted from Enceladus contain a large inventory of organic materials. These include both high- and low-molecular-weight hydrocarbon chains, aromatic-, nitrogen-, and oxygen-bearing compounds. Here we report experimental results on organic synthesis through hydrothermal (up to 150 °C) and freezing (down to –40 °C) processes using starting solutions simulating Enceladus' ocean. We find that, owing to HCN and NH3 in the starting solutions, amino acids, together with aldehydes, carboxylic acids, amines, and nitriles, are the primary products of hydrothermal synthesis. Freezing of the starting solutions can also form simple amino acids, such as glycine. Comparing with Cassini's observations, most of our hydrothermal products are in good agreement with observations arguing for a deep plume source, but amino acid-relevant molecular signals in the experiments appear to be absent in Enceladus' organic-rich particles. One possibility for this discrepancy is that partitioning of amino acids into salt-rich plume particles may obscure detection. Macromolecules with aromatic constituents and long hydrocarbon chains in Enceladus cannot be replicated in our experiments. Primordial organic matter or catalytic reactions at elevated temperatures (>150 °C) might contribute to the formation of macromolecules in Enceladus.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Organic chemistry
en
dc.subject
Astrobiology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Laboratory simulations of organic synthesis in Enceladus: Implications for the origin of organic matter in the plume
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
116836
dcterms.bibliographicCitation.doi
10.1016/j.icarus.2025.116836
dcterms.bibliographicCitation.journaltitle
Icarus
dcterms.bibliographicCitation.volume
444
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.icarus.2025.116836
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1090-2643
refubium.resourceType.provider
WoS-Alert