dc.contributor.author
Núñez-Jara, Sebastián
dc.contributor.author
Martínez-Garzón, Patricia
dc.contributor.author
Kwiatek, Grzegorz
dc.contributor.author
Ben-Zion, Yehuda
dc.contributor.author
Dresen, Georg
dc.contributor.author
Becker, Dirk
dc.contributor.author
Cotton, Fabrice
dc.contributor.author
Bohnhoff, Marco
dc.date.accessioned
2025-11-14T07:41:20Z
dc.date.available
2025-11-14T07:41:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50352
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50078
dc.description.abstract
Earthquakes are assumed to be unpredictable, but their forecasting may improve if signatures of preparatory processes can be reliably identified through continuous monitoring. Recent results suggest that years to months before large earthquakes, progressive rock weakening can lead to seismicity localization and coalescence, facilitating fault rupture. If this holds generally, comprehensive, years-long analyses of seismicity may help detect transients signaling proximity to large failure. We test this hypothesis by considering the 2023, MW 7.8 Kahramanmaraş, Türkiye, earthquake as a case study. A previous study identified an 8-month long activation of seismicity clusters in a complex fault network within 50 km of the future epicenter. To track earthquake evolution at higher resolution, we developed an enhanced seismic catalog combining deep-learning and classic techniques for the six years preceding the mainshock. Recurrent seismicity on the Narlı Fault, a secondary fault where the mainshock nucleated before propagating onto the major East Anatolian Fault Zone intensified months before the event, exhibiting increased localization and interaction. Moreover, in the weeks preceding the mainshock, seismicity surged on a previously quiescent branch aligning with the future rupture plane, yet no immediate foreshocks were observed in the final hours. We propose that persistent damage-induced weakening near the nucleation region primed the system for failure, ultimately enabling rupture propagation toward the main fault. Our findings underscore the importance of long-term, and consistent high-resolution seismic monitoring and analysis for tracking spatiotemporal seismicity transients that may serve as indicators of proximity to rupture.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Seismicity transients
en
dc.subject
Earthquake forecasting
en
dc.subject
Precursory signals
en
dc.subject
Machine-learning catalogs
en
dc.subject
Earthquake triggering
en
dc.subject
Nucleation off- main fault
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Unraveling the spatiotemporal fault activation in a complex fault system: the run-up to the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
119570
dcterms.bibliographicCitation.doi
10.1016/j.epsl.2025.119570
dcterms.bibliographicCitation.journaltitle
Earth and Planetary Science Letters
dcterms.bibliographicCitation.volume
669
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.epsl.2025.119570
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1385-013X
refubium.resourceType.provider
WoS-Alert