dc.contributor.author
Soundharajan, Bankaru-Swamy
dc.contributor.author
Wagner, Paul D.
dc.contributor.author
Peters, Kristin
dc.contributor.author
Sreeraj, S.
dc.contributor.author
Fohrer, Nicola
dc.contributor.author
Athira, P.
dc.contributor.author
Kiesel, Jens
dc.date.accessioned
2025-11-14T07:08:37Z
dc.date.available
2025-11-14T07:08:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50349
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50075
dc.description.abstract
Climate change and land use/land cover (LULC) changes influence streamflow by altering precipitation patterns, evaporation, and hydrological processes. Disentangling their combined effects is critical for effective water management under increasing climatic and environmental pressures. This meta-analysis integrates quantitative and qualitative approaches to assess the impacts of precipitation, temperature, and LULC changes on streamflow using published data sets, multiple linear regression, and Random Forest models. Precipitation emerges as the dominant driver, showing significant variability and a direct linear correlation with streamflow. Temperature impacts are inconsistent, while LULC changes demonstrate nuanced effects. Conversions to agriculture generally increase streamflow, whereas transitions to forests reduce it. Multiple linear regression revealed that precipitation alone explains nearly half of the variance in streamflow, with LULC changes contributing an additional but smaller percentage. In contrast, temperature changes have minimal influence. Variability in LULC conversions correlates with residuals, underscoring diverse impacts across land use types. The Random Forest model, which allows the consideration of non-linear dependencies, achieved R2 values of 0.7, confirming precipitation as the most critical predictor, followed by temperature and LULC changes. Including catchment area and climate zone added no significant improvement. These findings highlight the combined importance of precipitation, temperature and LULC changes in shaping streamflow dynamics. While comprehensive, the meta-analysis may overlook local factors such as micro-climate variations or land management practices. The variability in model predictive power underscores the challenge of modeling nonlinear relationships between climate, LULC changes, and streamflow. The results offer critical insights for sustainable water resource management and predictive hydrological modeling.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
meta-analysis
en
dc.subject
climate change
en
dc.subject
land use change
en
dc.subject
streamflow change
en
dc.subject
precipitation change
en
dc.subject
temperature change
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
A Meta-Analysis to Disentangle the Impacts of Climate and Land Use Changes on Streamflow
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2024EF005757
dcterms.bibliographicCitation.doi
10.1029/2024EF005757
dcterms.bibliographicCitation.journaltitle
Earth's Future
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2024EF005757
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geographische Wissenschaften / Fachrichtung Angewandte Physische Geographie, Umwelthydrologie und Ressourcenmanagement
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2328-4277
refubium.resourceType.provider
WoS-Alert