dc.contributor.author
Gubela, Nils
dc.contributor.author
von Kleist, Max
dc.date.accessioned
2025-11-05T12:31:25Z
dc.date.available
2025-11-05T12:31:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50069
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49794
dc.description.abstract
Mathematical modelling of infectious disease spreading on temporal networks has recently gained popularity in complex systems science to understand the intricate interplay between social dynamics and epidemic processes. As analytic solutions can usually not be obtained, one has to resort to exact stochastic simulation algorithms, yet these have remained infeasible for the large sizes of realistic systems. Here, we introduce a rejection-based stochastic sampling algorithm with high acceptance probability (‘high-acceptance sampling’; HAS), tailored to simulate disease spreading on adaptive networks. We prove that HAS is exact and can be multiple orders faster than Gillespie’s algorithm. While its computational efficacy is dependent on model parameterization, we show that HAS is applicable regardless on whether contact dynamics are faster, on the same time-scale, or slower than the concurrent disease spreading dynamics. The algorithm is particularly suitable for processes where the spreading- and contact processes are co-dependent (adaptive networks), or when assumptions regarding time-scale separation become violated as the process unfolds. To highlight potential applications, we study the impact of diagnosis- and incidence-driven behavioural changes on virtual Mpox- and COVID-like epidemic and examine the impact of adaptive behaviour on the spreading processes.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
simulation of infectious diseases
en
dc.subject
adaptive networks
en
dc.subject
mathematical modelling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Efficient and accurate simulation of infectious diseases on adaptive networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
PCSY-D-24-00176
dcterms.bibliographicCitation.doi
10.1371/journal.pcsy.0000049
dcterms.bibliographicCitation.journaltitle
PLOS Complex Systems
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
21
dcterms.bibliographicCitation.volume
2
dcterms.bibliographicCitation.url
https://doi.org/10.1371/journal.pcsy.0000049
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2837-8830